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CHAPTER I 

INTRODUCTION 

The dynamics of nonrigid s a t e l l i t e s  has  been the  sub jec t  of i n t e r e s t  

f o r  some t i m e .  There are numerous re ferences  i n  the l i t e r a t u r e  which 

r e f e r  t o  problems t h a t  have been solved e i t h e r  by t h e o r e t i c a l  a n a l y s i s  

o r  by emperical methods. 

s t a b i l i z e d  by using the  g rad ien t  of the Ear th ' s  g r a v i t a t i o n a l  f i e l d .  

The g r a v i t a t i o n a l  fo rce  which the Earth exerts on a second body 

For example, many s a t e l l i t e s  are  now 

decreases as the  inverse of the  square of the d i s t ance  between the  two 

mass centers. It has been shown t h a t  i f  a nonsymmetric s a t e l l i t e  with 

damping i s  placed i n  c i rcular  o r  near ly  c i r c u l a r  o r b i t  around a much 

l a rge r  body, the  sa te l l i t e  w i l l  become s t a b i l i z e d  about an i n e r t i a  

a x i s  which always poin ts  along the  l o c a l  v e r t i c a l .  This o r i e n t a t i o n  

allows a s a t e l l i t e  antenna t o  maintain, a t  a l l  times, some des i red  

poin t ing  pos i t i on  r e l a t i v e  t o  the  Earth. 

An a n a l y s i s  of t h i s  problem f o r  a dumbbell shaped s a t e l l i t e  which 

i s  ex tens ib l e  but may not  deform i n  bending appears i n  an a r t i c l e  by 

Paul . I n  t h i s  case, the  system always s t a b i l i z e s  i t s e l f  about a 

f ixed  d i r e c t i o n  r e l a t i v e  t o  the Earth.  This is not  always d e s i r a b l e  

as i n  the case  of a manned space capsule spinning about i ts  booster 

vehic le  a t  the  end of a cab le  to provide a r t i f i c i a l  g rav i ty  f o r  the  

a s t ronau t .  Here i t  is d e s i r a b l e  f o r  the  spinning to  continue inde f fn i t -  

l y  without t h e  a d d i t i o n  of t h r u s t .  

1 
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The problem of  a c a b l e  connected system s p i n n i n g  i s  o r b i t  r a i s e s  

two b a s i c  s t a b i l i t y  q u e s t i o n s :  (1) w i l l  t h e  s y s t e m  c o n t i n u e  t o  move 

a t  a f a i r l y  c o n s t a n t  s p i n  r a t e  i n  t h e  p r e d i c t e d  o r b i t  and ( 2 ) ,  w i l l  

t h e  i n t e r n a l  motion o f  t h e  s y s t e m ,  i n  t h i s  case t h e  c o n n e c t i n g  c a b l e ,  

remain bounded nea r  some d e s i r e d  motion? S e v e r a l  pape r s  on t h e s e  two 

problems have been w r i t t e n .  A l l  d e a l  o n l y  w i t h  motion i n  t h e  p l a n e  of  

t h e  o r b i t .  

In c o n n e c t i o n  w i t h  t h e  f i r s t  s t a b i l i t y  q u e s t i o n ,  t h e  paper  by 

P i t tman  and Hal l  claims t h a t  any such system is  i n h e r e n t l y  s t a b l e  

s i n c e  i t  i s  moving i n  a c o n s e r v a t i v e  f o r c e  f i e l d .  Th i s  is  t r u e ,  

bu t  t h e y  do n o t  make s t a t e m e n t s  a b o u t  t h e  l i m i t s  of  t h e s e  bounds and ,  

a s  w i l l  be shown l a t e r ,  t h e  l i m i t s  may be u n d e s i r a b l e  from a p r a c t i c a l  

p o i n t  of  view. 

bu t  r e s t r i c t s  i t s e l f  t o  an i n v e s t i g a t i o n  of  n o n l i n e a r  e f f e c t s  due t o  

r o t a t i o n .  H i s  model i s  a l s o  t h e  e x t e n s i b l e  dumbbell  f o r  which he 

2 

The s t u d y  by Aus t in3  d o e s  n o t  c o n s i d e r  t he  g r a v i t y  e f f e c t s  

conc ludes  t h a t  n o n l i n e a r i t i e s  due t o  r o t a t i o n a l  e f f e c t s  become impor- 

t a n t  o n l y  when t h e  s p i n  ra te  is h i g h .  H e  does n o t  c o n s i d e r  t h e  dynamics 

of t h e  c o n n e c t i n g  c a b l e .  

Thus, i n  answer t o  t h e  f i r s t  s t a b i l i t y  q u e s t i o n ,  i t  would seem t h a t  

t h e r e  i s  n o t h i n g  t o  i n s u r e  t h a t  t h e  system w i l l  n o t  l e a v e  i t s  p r e d i c t e d  

K e p l e r i a n  o r b i t  and approach the  E a r t h ' s  s u r f a c e  a t  a h i g h e r  and h i g h e r  

s p i n  r a t e  so t h a t  t h e  t o t a l  energy is conse rved .  

The second q u e s t i o n ,  t h a t  o f  c a b l e  dynamics,  h a s  been s t u d i e d  by 

4 6 
s e v e r a l  a u t h o r s .  

and Targoff '  a l l  t r ea t  t h e  problem of  a c a b l e  connected sys t em s p i n n i n g  

The pape r s  by Chobotov , Pengel ly5,  T a i  and Loh , 

i n  o r b i t .  Each assumes t h e  c a b l e  t o  have n e g l i g i b l e  bending s t i f f n e s s ,  

and t o  be o f  a uniform,  l i n e a r  e l a s t i c  material. The bod ies  which the  



cab le  connects are assumed t o  be poin t  masses by a l l  authors.  

Pengelly a l s o  d e a l s  wi th  f i n i t e  r i g i d  bodies. The paper by Targoff 

c a r r i e s  the  a n a l y s i s  of cab le  dynamics the  f u r t h e s t  so the  present  

d i scuss ion  w i l l  be r e s t r i c t e d  to  h i s  paper. 

However, 

Targoff de r ives  the  equations of motion by summing fo rces  on each 

mass element of the  sys t em and s a t i s f y i n g  s t a t i c  equi l ibr ium with the 

corresponding D'Alembert forces .  

made from the  s t a r t  of the  ana lys i s .  C o r i o l i s  e f f e c t s  a r e  a l s o  

neglected t o  uncouple the  equations which he de r ives .  The f i r s t  

assumption, t h a t  of small d e f l e c t i o n s ,  is commonly made when studying 

dynamic systems, and can usua l ly  be j u s t i f i e d  i f  s t a b i l i t y  is  demonstrated. 

However, it is  no t  c l e a r  t h a t  the  second assumption, t h a t  of neglec t ing  

the C o r i o l i s  e f f e c t s ,  can be j u s t i f i e d .  Even i n  the case of s l o w l y  

An assumption of small d e f l e c t i o n s  i s  

spinning systems, the f o r c e s  r e t a ined  i n  the a n a l y s i s  a l s o  tend t o  

decrease wi th  the  sp in  r a t e  as do the C o r i o l i s  forces .  Unfortunately, 

the equations detived f o r  the  spinning cable  system are  too complex t o  

lend themselves to a n a l y t i c a l  s o l u t i o n  i f  the C o r i o l i s  e f f e c t s  a r e  

r e t a ined .  

8 A survey paper by Ashley po in t s  ou t  t ha t ,  i n  general ,  a systematic 

approach to the  problem of g rav i ty  g rad ien t  exc i ted  spinning systems 

needs t o  be considered. The au thors  mentioned above have, each i n  h i s  

own way, a t tacked  some aspec t  of the  problem by var ious  techniques. 

Their methods of a n a l y s i s  soon reach the  l i m i t  of t h e i r  a p p l i c a b i l i t y  

when appl ied  to  r e l a t i v e l y  simple systems. This i s  no t  to s a y  t h a t  t he  

r e s u l t s  obtained from these  s t u d i e s  are no t  v a l i d  o r  usefu l .  The r e l u l t s  

of a s impl i f i ed  a n a l y t i c  approach are 

as  a s t a r t i n g  poin t  of a more genera l  and lys i s .  

y times i n s t r u c t i v e  and serve 
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The purpose o f  t h e  p r e s e n t  s t u d y  is t o  p r e s e n t  a more g e n e r a l  

approach.  The methods of a n a l y s i s  d e s c r i b e d  h e r e  can  be a p p l i e d  t o  

g e n e r a l  cable  connected s t r u c t u r e s .  The method p r e s e n t e d  is  s p e c i f i -  

c a l l y  a p p l i e d  t o  t h e  problem of a p o i n t  mass s p i n n i n g  abou t  a much 

h e a v i e r  body t o  which i t  i s  connected by a l i n e a r  e l a s t i c ,  c o n s t a n t  

d e n s i t y ,  c o n s t a n t  cross s e c t i o n a l  area c a b l e .  The sys t em,  i n  t u r n ,  

i s  i n  a n  o r b i t  a b o u t  a t h i r d  body a s  can be s e e n  i n  F i g u r e  1, Th i s  

p a r t i c u l a r  c o n f i g u r a t i o n  i s  a s p e c i a l  c a s e  of  t h e  more g e n e r a l  model 

c o n s i d e r e d  by Targoff’ and o t h e r s  4,5,5 

For t h e  more g e n e r a l  model, t h e  c e n t e r  of mass i s  n o t  n e c e s s a r i l y  

a t t a c h e d  t o  a p h y s i c a l  p o i n t  on t h e  s y s t e m .  I n  t h e  case c o n s i d e r e d  

h e r e ,  t h e  c e n t e r  o f  mass is  assumed t o  be a t  t h e  c e n t e r  of  t h e  h e a v i e r  

of  t h e  two o r b i t i n g  masses. Th i s  assumption i s  r e a s o n a b l e  f o r  a 

s y s t e m  which h a s  a heavy body a t  t h e  c e n t e r  o f  t h e  s t r u c t u r e .  If t h e  

more g e n e r a l  c o n f i g u r a t i o n  were t o  be s t u d i e d  i n  t h e  same way as t h a t  

proposed h e r e ,  as  a r u l e ,  two c o n s t r a i n t  e q u a t i o n s  would have to be 

imposed which would s p e c i f y  t h e  o r i g i n  o f  t he  c o o r d i n a t e  system of t h e  

o r b i t i n g  bod ies  a s  t h e  c e n t e r  o f  mass o f  t h e  o r b i t i n g  system. 

There are ,  i n  f a c t ,  two cases where i t  i s  n o t  n e c e s s a r y  t o  i n c l u d e  

t h e  c o n s t r a i n t  e q u a t i o n s :  (1) t h e  case mentioned above i n  which t h e  

c e n t e r  o f  mass i s  assumed to  be a t  t h e  c e n t e r  o f  t h e  h e a v i e r  body and 

(2)  t h e  dumbbell  case, a l so  mentioned p r e v i o u s l y .  I n  t h e  case o f  t h e  

l a t t e r ,  t he  c e n t e r  of mass is on a l i n e  between t h e  two end mass p o i n t s  

i f  t h e  c o n n e c t i n g  c a b l e  i s  assumed to  be massless. Both cases are  

c o n s i d e r e d  i n  t h e  work. 

I n  t h e  f i r s t  p a r t  of  t h i s  s t u d y ,  t h e  e q u a t i o n s  of motion are  



derived by applying Hamilton's p r i n c i p l e  t o  the  a c t i o n  i n t e g r a l  f o r  the 

cable  'connected s y s t e m  shown i n  Figure 1. The equations derived a r e  

nonl inear ,  coupled, p a r t i a l  d i f f e r e n t i a l  equations with time dependent 

boundary condi t ions .  Three s p e c i a l  cases are shown t o  come from the  

genera l  equations when appropr ia te  assumptions are imposed. The 

complexity of the  gene ra l  nonl inear  equations and the  corresponding 

l i nea r i zed  equations seems t o  preclude a n a l y t i c a l  s o l u t i o n  Cnless some 

r a t h e r  severe  assumptions a r e  made. Thus, even though a systematic 

approach t o  the  problem v i a  Hamilton's p r i n c i p l e  produced the  exac t  

equations of motion f o r  the system, l i t t l e  information concerning 

s t a b i l i t y  o r  motion can be obtained without IimitSng assumptions. 

Because of t he  d i f f i c u l t i e s  encountered above, i t  is  proposed i n  

6hapter I11 t h a t  t h e  cable  be approximated by l i n e a r  e las t ic ,  massless 

spr ings .  

shown t o  be a system of nonl inear ,  o rd inary  d i f f e r e n t i a l  equations.  

Damping i s  included i n  the equations and i t s  e f f e c t s  of s t a b i l i t y  

inves t iga ted .  Previous au thors  have given only a b r i e f  and, perhaps, 

overs impl i f ied  look a t  damping e f f e c t s .  

The Lagrange equations of motion fo r  the  lumped system a r e  

The s imples t  lumped mass model, the  dumbbell, is then used t o  

examine, i n  more d e t a i l ,  the  bounds on the  types of motion which can 

occur wi th in  t h e  energy l e v e l s  of t he  conserva t ive  sys tem.  The o r b i t s  

i n  which the dumbbell may move are  shown to  be e s s e n t i a l l y  those i n  

which a poin t  mass may move; however, a small change i n  o r b i t  of the  

dumbbell means a s i z a b l e  change i n  sp in  rate. 

The bounds are found by examining t h e  f i c t i c i o u s  p o t e n t i a l  func t ion  

f o r  the  dumbbell system. Resul t s  from a numerical i n t e g r a t i o n  of the  
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exact equations f o r  the dumbbell i n d i c a t e  t h a t ,  f o r  most cases, i t  i s  

reasonable t o  assume t h a t  the cen te r  of mass of the system moves i n  a 

Keplerian o r b i t .  This a f f o r d s  one the luxury of being a b l e  to c a l c u l a t e  

the pos i t i on  of the cen te r  of mass independent of the r e l a t i v e  motion 

of the system. It i s  shown t h a t  t he  motion of a dumbbell whose cen te r  

of mass moves i n  an undisturbed Keplerian o r b i t ,  and t h a t  of a l i g h t  

mass spinning about a very heavy mass which a l s o  moves i n  an  undisturbed 

Keplerian o r b i t  a re  almost i d e n t i c a l .  The l a t t e r  model is henceforth 

r e fe red  t o  a s  the s i n g l e  mass model s ince  only the l i g h t e r  mass moves 

r e l a t i v e  t o  the  o r b i t a l  po in t .  The above r e s u l t  i s  used t o  j u s t i f y  

the  o r i g i n a l  model and o r b i t a l  assumption considered. 

Next, the r e s u l t s  of a n  a n a l y s i s  of g rav i ty  g rad ien t  s t a b i l i z a t i o n  

of the s i n g l e  mass model, which is equiva len t  t o  the  dumbbell, a r e  

shown t o  agree  with t h e  work of P a u l  

reached from examination of the f i c t i c i o u s  p o t e n t i a l  function. 

1 and a l s o  with the  conclusions 

The a n a l y s i s  then proceeds t o  the case where the  s i n g l e  mass i s  

The l i nea r i zed  equations a r e  shown t o  be forced ,  spinning i n  o r b i t .  

o rd inary  d i f f e r e n t i a l .  equations wi th  per iodic  c o e f f i c i e n t s .  A method 

given i n  the book by Cesari’ allows one t o  s tudy  the  s t a b i l i t y  of t he  

system of l i n e a r  equations with pe r iod ic  c o e f f i c i e n t s .  The method, 

due t o  Floquet, may be appl ied  through numerical i n t e g r a t i o n  t o  any 

se t  of l i n e a r  ord inary  d i f f e r e n t i a l  equations having pe r iod ic  c o e f f i -  

c i e n t s .  

can be sys t ema t i ca l ly  analysed by lumping the d i s t r i b u t e d  mass of the 

cab le s ,  l i n e a r i z i n g  the equations,  and applying Floquet theory by 

numerical i n t eg ra t ion .  

The importance of t h i s  r e s u l t  is t h a t  any gene ra l  conf igura t ion  
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The i n v e s t i g a t i o n  then tu rns  t o  the  dynamics of the  connecting 

cable.' A j u s t i f i c a t i o n  of the  lumped a n a l y s i s  is shown by comparing 

n a t u r a l  f requencies  obtained from both a d i s t r i b u t e d  mass and a lumped 

mass a n a l y s i s  of  the  nonspinning cable.  The e f f e c t s  of damping i n  the 

lumped model a r e  considered and shown to be i n e f f e c t i v e  i n  damping o u t  

t ransverse  motions. 

A b r i e f  a n a l y s i s  i s  given to j u s t i f y  neglec t ing  out-of-plane 

motions of the  connecting cable  i n  any a n a l y s i s  of in-plane motions. 

The f i n a l  s e c t i o n  g ives  an example of how f h i t e  bodies may be 

incorporated i n t o  the  lumped model t o  determine the modes of s t a b i l i t y  

and motion f o r  a cab le  connected system where the  r i g i d  body motion 

of the connected bodies may be important. 

The impetus f o r  t h i s  work a rose  from a NASA gran t  t o  the  Radio 

Astronomy Observatory of the  University of Michigan t o  s tudy  the  

f e a s i b i l i t y  of a very l a rge  cable connected o r b i t i n g  and spinning 

antenna f o r  r a d i o  astronomy observation near t he  1Mc. frequencies 

( see  re ference  10 f o r  more d e t a i l s  of the  antenna). 

model considered i n  t h i s  study is, i n  f a c t ,  an approximation to  a 

por t ion  of t h a t  s t r u c t u r e .  The genera l  approach t o  the  problem was 

devised to allow a n a l y s i s  of the complete ' s t r u c t u r e  i n  o r b i t .  

The s i n g l e  mass 



CHAPTER I1 

DISTRIBUTED MASS SYSTEM 

The system t o  be considered c o n s i s t s  of a poin t  mass s u b s a t e l l i t e  

connected t o  a much heavier  po in t  mass which moves i n  an undisturbed 

Keplerian o r b i t  around the  Earth,  a s  shown i n  Figure 1. It is  assumed 

t h a t  the  motions of the s u b s a t e l l i t e  do not  d i s t u r b  the heavier  mass. 

The assumption of a po in t  mass s u b s a t e l l i t e  i s  a s impl i fy ing  assumption 

which can e a s i l y  be dropped, i f  the  r i g i d  body motions are t o  be con- 

s idered,  as w i l l  be shown i n  chapter  V. The cable  i s  assumed t o  have 

cons tan t  l i n e a r  e las t ic  proper t ies ,  constant  mass d i s t r i b u t i o n  and a 

constant  c ros s  sec t iona l  area. These th ree  assumptions are not  necessary 

f o r  t he  ana lys i s ,  b u t  do s impl i fy  the work requi red  and are  reason- 

ab le  f o r  most appl ica t ions .  The motions a r e  r e s t r i c t e d  t o  the  o r b i t a l  

plane s ince  a l l  t he  f e a t u r e s  of the  ana lys i s  can be shown f o r  t h i s  type 

of motion. A f u r t h e r  j u s t i f i c a t i o n  of t h i s  r e s t r i c t i o n  is presented i n  

chapter I V  where the  cable  i s  f r e e  t o  mcwe out of the plane.  The motion 

re ference  l i n e  shown i n  Figure 1 and given by the  coordinate  Q, is general  

and may be s p e c i f i e d  as the  r i g i d  body motion of the  c a b l e - s u b s a t e l l i t e  

system. 

s tudied.  

The d e f i n i t i o n  of cp i s  changed t o  s u i t  the  p a r t i c u l a r  case 

The r a d i a l  and tangent ia l  de f l ec t ions  of the  cable, v ( r , t )  and 

u ( r , t )  respec t ive ly ,  are measured from the undeflected,  r i g i d  body r e fe -  

rence l i n e  given by r and cp. Hence, t he  system i s  constdered t o  be 

r o t a t i n g  i f  6 + 0. 
a 
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Using t h i s  model and the  above assumptions, the exact equations of 

motion a r e  derived via Hamilton's p r inc ip l e .  They a r e  l i n e a r i z e d  and 

solved f o r  t h ree  s p e c i a l  cases of cons tan t  tension: (1) nonrotating, 

where cp = 0, with  no g r a v i t y  grad ien t  e f f e c t s ,  (2) r o t a t i n g ,  where 

Q, - constant,  aga in  wi th  no g r a v i t y  grad ien t  e f f e c t s ,  and (3) r o t a t i n g  

i n  the  g r a v i t y  g rad ien t  wi th  cp = a func t ion  of time. 

. 
These th ree  cases  

a r e  shown t o  agree wi th  previous work and they a l s o  demonstrate the 

assumptions which must be made t o  obta in  s o l u t i o n s  f o r  the d i s t r i b u t e d  

mass ana lys i s .  

We now proceed t o  der ive  the equations of motion. The r ad ius  vector 

from the Ea r th ' s  cen ter  t o  any mass poin t ,  dm, i s  given by 

- 
( 1 )  r = [R cos 8 + ( r  + v)cos cp - u s i n  917 

+ [it s i n  e + (r + v ) s i n  cp + u cos 917 

The square of the magnitude of the v e l o c i t y  vec tor  is given by 

0 0 .. . .  .. 
+ 2 cos (cp  - e)[Rv + B9u + Re(r + v)cp - Ruep] 

+ 2 s i n  (cp - e)[ - Ru - R ( r  + v)cp + Rev - R ~ u c ~ ] .  
.. . . .. * .  

The Lagrangian consists of t he  folluwing terms 

Ls = Ts - VE - VG 

where Ts 5 Kine t i c  energy of cable  

VE f t h e  e l a s t i c  p o t e n t i a l  of t he  cable  

and V il t he  p o t e n t i a l  due t o  the  g r a v i t y  f i e l d .  G 
The term, Ts, i s  given by 
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f o r  p = const.  

where I = length of unstretched cable  and p = mass/unit length.  The 

e l a s t i c  po ten t i a l ,  VE, i s  given by 

I 
vE = 1 / 2 l A E  G2dr 

0 

where E i s  the  a x i a l  s t r a i n  of the  cable,  A i s  i t s  c rossec t iona i  area 

and E i s  Young's modulus. This d e f i n i t i o n  of s t r a i n  energy assumes t 

only a x i a l  s t r a i n s  and neglec ts  bending s t r a i n s .  

v a l i d  f o r  a long t h i n  cable,  even when t ransverse  de f l ec t ions  are 

allowed, i f  the  l o c a l  r ad ius  of curvature  remains large.  

s t r a i n  i s  given by 

This assumption is 

The axial 

we g e t  
2 

JAr + (v2 - v,)] + (u2 - u1)2 - Ar ) -J1 + 2vr + vr 2 + Ur2 - 1 
Ar l i m  ( 

Ar + o  



11 

_au 
ar ' 

b V  
where v implies - and ur implies r ar 

For small displacements, t h i s  reduces t o  the  familiar one-dimensional 

s t r a i n  displacement r e l a t i o n  

E P V  r 

Fina l ly ,  fo r  VE, 

The p o t e n t i a l  V i s  given by G' 

1 

where G = product of Universal 
g rav i ty  constant  and mass of Earth. 

dr  

After  s u b s t i t u t i o n  for  1; 1 ,  
1 

dr  0 

2 
( 5 )  ' G  I- Ql 

0 {R2 + (r + v) + u2 4 2 R [ ( r  + v)cos(cp - 0 )  - u sin(cp - e)] 

Hence, Ls, i s  expressed by equations (3), (k) ,  and (5). 

f o r  the  end mass contr ibut ion,  LM, is found by rep lac ing  the  i n t e g r a l  of 

pdr by M and eva lua t ing  the  func t ions  a t  r = 1 i n  expressions (3) and ( 5 ) ,  

i .e .  

The Lagrangian 

The a c t i o n  i n t e g r a l  i s  defined as 

2 t 

J(v,u) =l Ldt 

where L = Ls + $. 
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Expressing the  v a r i e d  func t ions  as 

* 
v ( r , t )  = v ( r , t )  + e v  (r,t) 1 

and 

* 
u ( r , t )  = u ( r , t )  + E U  (r , t)  

1 

w e  may compute the  f i r s t  v a r i a t i o n  of the  a c t i o n  i n t e g r a l .  According t o  

Hamilton's p r i n c i p l e ,  the  f i r s t  v a r i a t i o n  must be s t a t iona ry .  

Hence f o r  

t 

J -  J f 2  fLsd rd t  +I ' h d t  

w e  ge t  the  v a r i a t i o n  (see reference  11) 

V r (8) 85 - 
'v ar a t  t o  1 

t aLS U J2f (L - - r - %) u ( r , t ) d r d t  
1 + E  

ar a t  
S 

U tl 0 . 

Ls. v1 + L . u l )  +&[LS V v1 + L s  U ul)]drdt 

r r ar S 
V U 



i$L 
where Ls impl ies  - 
t he  time i n t e r v a l ,  hence 

The va r i ed  func t ions  must vanish a t  the end of 
V av 

The geometric boundary conditions are v (0 , t )  * u ( 0 , t )  = 0. 

these condi t ions  t o  equation (8) reduces i t  t o  

Applying 

vl(r, t ) d r d t  

0 r 

t I  
+ eJ2[ (. - -L a - Ls.) u l ( r , t )d rd t  

u ar ‘u at, u,  r 
8 

tl 

t 

+ es’(.., r v1 + L  r u l ) l d t  

r = l  

t 

+ E [‘(k - - LM. vl( L,t)dt  ” a t  v 

- - a LM. 1 u l ( l , t ) d t  

a t  u 

For the v a r i a t i o n  t o  vanish, each of t he  f i r s t  two i n t e g r a l s  must 

vanish. Thus, we obta in  the equations of motion from the f i r s t  two 

i n t e g r a l s ,  namely 
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and 

(11) 

- -  a L - 0  a t  si a - -  
Ls V ar Ls V r 

a. - -  ;t Lsl = 0 . 
sU -zLs U r 

After  c o l l e c t i n g  the  i n t e g r a l s  having u 

the  fol lowing n a t u r a l  boundary condi t ions f o r  the  f r e e  end of the  cable,  

and v respec t ive ly ,  we obta in  1 1 

a + LM - -  at  LM. 5 0 
' s r l r  V = 1 V V 

The equat ions and boundary condi t ions a t  t h i s  po in t  are i n  terms of 

the  two con t r ibu t ions  t o  the Lagrangian. 

terms of our displacement €unctions,  u and v, the  following de r iva t ives  

a r e  ca l cu la t ed  

To compute the equat ions i n  

r + v) + R COS (cp  - e ) ]  
3 12 - G o e [ (  

(R2 + ( r  + v ) ~  + u2 + 2R[(r + v) cos ( cp  e )  - u s i n  (cp - e)]) 



+ v v  + u u  ) 
2 3/2 

+ (1 + q v r r  r rr 

(1 + 2vr + Vr2 + ur 1 

+ v v  + u u  ) (vrr r rr 
2 + 

(1 + 2vr + vr + 

H 0 .  II 0 .  N b. 
ats. . 

(19) -- = -  p {u + vrp + (r + ~ ) q  4- [Re + Re - R ( c ~  .- e)] COS (9 - e) a t  

The terms i n  equat ions (14) and (15) which came from the  g rav i ty  

p o t e n t i a l  may be expanded i n  terms of the  r a t i s  of the  body dimensions t o  

the  o r b i t a l  radius .  

R >>> r, v, U. 

This  expansion converges q u i t e  r ap id ly  s ince  

Keeping up t o  f i r s t  order term, we get f o r  these  terms 

r e spec t ive ly  
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2 
(20) - GQ cos (q - e) - GQ ( r  + v) + [(r + v) cos ( c p  - e) 

R3 R3 
2 R 

and 

It can be noted here  t h a t  i f  a l l  t he  terms mul t ip l ied  by s i n  (cp - e )  
and cos (9 - e )  a r e  co l lec ted ,  t h e i r  c o e f f i c i e n t s  from equations (14) and 

(15) a r e  

These two c o e f f i c i e n t s  a r e  zero  i f  we l e t  R and 0 be governed by 

Keplerian equations of motion which was assumed a t  the  beginning of the  

pr ob1 em. 

F ina l ly ,  the  nonlinear,  p a r t i a l  d i f f e r e n t i a l  equations f o r  plane 

motion fo r  the  l i n e a r  e l a s t i c  subsa te l l i t e - cab le  system a f t e r  expanding 

the g rav i ty  p o t e n t i a l  cont r ibu t ion  a r e  



and 

(24) 

+ 

+ 

.. 
U 

1 AE 1 .. 
2 

r 1 + 2vr + Vr2 + u 

AE ur(vrr + VrVrr + "rUrr) . 
(1  + 2vr + vr2 + ur 2 ) 3/ 4 

Upon ident i fy ing  the c o e f f i c i e n t s  as the point mass i n  orbit  equations 

of motion, the boundary conditions become 

r k t  
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and 

G .. 
(26) u = u {i2 +-- [l - 3 cos 2(q  - e)]} 

2 ~ 3  

The equat ions of motion are a func t ion  of two va r i ab le s ,  time 

and d is tance .  They are forced through the  gyroscopic and g r a v i t y  

grad ien t  terms and coupled through the gyroscopic, the  e las t ic ,  and the  

g rav i ty  grad ien t  terms. The boundary condi t ions f o r  the f r e e  end 

e x i b i t  the  same form as the  equations of motion and are t i m e  dependent. 

An a n a l y t i c  s o l u t i o n  of t h i s  se t  of equations i s  hopeless. However, 

there  are c e r t a i n  i n t e r e s t i n g  and informative s p e c i a l  cases t h a t  may be 

s tud ied  i f  appropr ia te  s impl i fy ing  assumptions are made. 

1. Case I - Non-spinning i n  Free Space 

I f  we do the  f o l l m i n g :  (1) l e t  R = 00 so t h a t  the  g rav i ty  e f f e c t s  
8 

vanish, (2) l e t  Q, = 0, which implies  t h a t  the  system is non-rotat ing and, 

f i n a l l y ,  (3) p re sc r ibe  t h e  tens ion  by s e t t i n g  AEv 

have the  case corresponding t o  t h a t  of a cable  v i b r a t i n g  wi th  a cons tan t  

= T = constant ,  we r 

tens ion  between f ixed  walls. 

equat ion (24) and i t  i s  then l inear ized ,  w e  g e t  t he  f ami l i a r  v i b r a t i n g  

If the above r e s t r i c t i o n s  are placed on 

s t r i n g  equat ion 
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with boundagy condi t ions  u (0 , t )  = u ( t , t )  = 0.  

are e a s i l y  found t o  be 

The n a t u r a l  frequencies 

n = 1 ,  2, 3, . e 

I n  the  same manner, t he  equations f o r  t he  axial v ib ra t ion ,  where no 

t ransverse  d e f l e c t i o n s  are a l l w e d ,  can be found t o  be 

** AE v = -  
P rr 

B.C. => v(0, t )  = v(1 , t )  I 0 

and the  frequencies o f . v i b r a t i o n  are found t o  be 

n = 1 ,  2,. . . 

2. Case 11 - Spinning i n  Free Space 

I n  order t o  s tudy  t h i s  case, w e  l e t  R = * a s  i n  Case I, but  now 

spec i fy  t h a t  cp - w  - cons tan t  and l e t  the  tension be a cons tan t  wi th  

r e spec t  t o  t i m e  bu t  vary along the length  of t h e  cable. When the r a d i a l  

displacement i s  a func t ion  of r alone, i t  implies t h a t  t h e  end mass is 

allowed t o  seelt a steady s t a t e  equi l ibr ium p o s i t i o n  along the  r,cp r e f e -  

rence l i n e  and then  i s  he ld  f ixed  relative t o  t h a t  l i n e  for t he  remainder 

of the  problem. 

boundary conditions,  s i n c e  the p o s i t i o n  of the end mass is  f ixed  i n  the  

This  has the  e f f e c t  of e l imina t ing  the  t i m e  dependent 

r o t a t i n g  r e fe rence  frame. 



and 

The folluwing l i nea r i zed  equat ions r e s u l t  from equations (23) and (24) 

AE .. 
u = u,w2 + - (urvrr + v ) P r rr 

where w = cp = constant.  The boundary condi t ions a r e  

v(0, t )  = U ( 0 , t )  5 0 

( l + v )  w2 -- A E v  = o  ~r r = = L  

and 

u = o  r = l  

I n  order t o  so lve  the l i n e a r  set, the  C o r i o l i s  coupling terms have 

been neglected. This  cannot be j u s t i f i e d ,  s ince  the  C o r i o l i s  terms 

appear even i n  the  l i n e a r  equations.  The equation which y i e l d s  the  

s teady s t a t e  tens ion  is  equation (29) which has f o r  so lu t ion  

v(r) = B1 s i n  clr + B2 cos ar - r 

where 
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The boundary condi t ions  f o r  v << I become 

2 v(0,t) - 0 and AEvr(I,t) = M a  I for t 2 0 

which y i e l d s  

B2 = 0 and 1 + M a2L/AE 
*1= cos CrI 

giv ing  

AE 
P 

.. 
ut - u w2 + - [urr(rnl  cos ar - 1) - s i n  arl. 

For a<< 1, i.e. small s p i n  r a t e s ,  we g e t  

This i s  a reasonable assumption for  the linear equations, s ince,  as pointed 

out previously,  nonlinear e f f e c t s  become important only as the  s p i n  rate 

becomes large.  Hence we g e t  

or f i n a l l y  

To reiterate, the assumption of small displacements and slaw s p i n  rate 

have been m d e  i n  order t o  l i n e a r i z e  t h e  equations.  
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L e t t i n g  

u ( r , t )  = X(r)T(t)  

and 

(33) 
2 2 2 2  xrr(c - %) w2 - ru xr + (8 + w  )x = 0 

where C f 12[i + 51. I f  C i s  la rge ,  such as i t  would be f o r  a l a r g e  

t i p  mass t o  cable  weight r a t i o ,  and i f  w e  d iv ide  by C and neglec t  terms 

of order r / C ,  (33) reduces t o  

(34) 

This is the  v i b r a t i n g  s t r i n g  equat ion again, modified by the  r o t a t i o n a l  

2 r a t e  w . Hence 

X ( r )  = B1 s i n  a r + B cos a r 1 2 1 where a1 
C W  

The boundary condi t ions  are X ( 0 )  = 0 and X(f) = 0 which gives  

B, = 0 and , s in  all = nr 
* .  L 

and 



This  shows t h a t  the frequency inc reases  as (1) t h e  s p i n  rate increases ,  

(2) the  t i p  mass increases ,  or (3) cable  mass, p l y  decreases. 

The e f f e c t s  of spinning and the e f f e c t s  of t he  corresponding tens ion  

inc rease  can be separa ted  as folluws: from equat ion  (3O), 

T 
P rr 

0. 

u = u w 2 + - u  , 

for a cons tan t  tens ion  which i s  not necessa r i ly  the  steady state equi- 

1 i br  i um t ens  i on 

Xrr +; ( w2 + p2)x = 0 

and 

where a 3 X ( r )  = B1 s i n  a r 
3 

which g ives  

This implies t h a t  f o r  cons tan t  prescr ibed  tension, spinning the system re- 

duces the na tu ra l  frequencies.  I f  we s u b s t i t u t e  f o r  T, i t s  s teady  s ta te  

equi l ibr ium value, and we ge t  

which shows t h a t  spinning inc reases  the  n a t u r a l  frequencies i f  t he  tens ion  

i s  determined by t h e  s teady  state equi l ibr ium p o s i t i o n  of t he  end mass. 

3,  Case I11 - Spinninp: i n  Orbi t  
e 

If w e  now l e t  R be governed by t h e  Kepler ian equations of motion, cp be 

governed by the  equations for a r i g i d  rod  spinning i n  o rb i t ,  t he  tens ion  

again be only a func t ion  of r, and neglec t  t h e  C o r i o l i s  coupling, w e  can 

again sepa ra t e  v a r i a b l e s  and ob ta in  s o l u t i o n s  t o  the  l i n e a r i z e d  equations. 

As pointed out f o r  case 11, neglec t ing  t h e  C o r i o l i s  coupling cannot be jus- 
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t i f i e d  and may be a severe l i m i t a t i o n  on the results obtained by t h i s  ana lys i s .  

The s teady  s ta te  tension, AEvr is governed by the  following 

with b oundar y c ondi ti ons 

The expression for vr(r)  which r e s u l t s  is 

This and the  expression for vrr ( r )  i s  s u b s t i t u t e d  i n t o  (24) and then 

l i n e a r i z e d  t o  y i e l d  

. 
Equation (35) is t he  same as equation (31) i f  R = 00, and cp = w, and .. 

cp = 0. 

shown for the  f r e e  space s o l u t i o n  of equation (31). 

The mode shapes can be obtained f o r  c e r t a i n  s impl i f i ed  cases  a s  

The corresponding t i m e  varying equation, a f t e r  s epa ra t ing  va r i ab le s ,  

i s  of the  form 

*' T +  ( + €  f ( t ) ) T  = O  . 



The d e t a i l s  of t h e  sepa ra t ion  of v a r i a b l e  w i l l  not be shown here, 

s i n c e ' o n l y  the  general  form of the  t i m e  dependent function, T ( t ) ,  i s  

discussed. I n  order t h a t  s epa ra t ion  of v a r i a b l e s  be appl icable ,  we 

must  have 

2R' 

l f f e r e n t i a  equation governs t h e  v a r i a t i o n  of cp f o r  t he  re erence 

frame and in t roduces  the t i m e  dependency, f ( t ) ,  i n t o  equat ion (36). The 

above equat ion f o r  cp is, the  equation f o r  a r i g i d  dumbbell i n  o r b i t .  I f  

t he  length  of t he  dumbbell i s  assumed t o  be a constant,  t he  equat ion  may 

be obtained from the  equations for an elastic dumbbell which are derived 

i n  chapter IV. 

those derived by Targoff . 
Equation (35) and the  form of equation (36) agree  w i t h  

7 

Targoff d i scusses  s t a b i l i t y  f o r a  1 3 0 where he shows t h a t  

equation (36) can be approximated by the Mathieu equation. 

t h a t  t h e  system is uns tab le  i n  some cases  but t h a t  a small amount of 

damping w i l l  s t a b i l i z e  t h e  motion. 

He concludes 

It i s  ques t ionable  whether s u f f i c i e n t  damping w i l l  be p re sen t  f o r  

small de f l ec t ions .  As w i l l  be demonstrated i n  chapter 111, inc luding  

viscous damping i n  the  equations f o r  the cable  does not produce l i n e a r  

terms i n  t h e  equations f o r  t h e  t r ansve r se  motfon as i t  does i n  the eque- 

t i o n s  f o r  t h e  axial motion and, hence, does no t  y i e l d  t h e  des i r ed  damp- 

i n g  e f f e c t ,  

involved are so l a r g e  f o r  l i n e a r  d e f l e c t i o n s  of long t h i n  cab le s  t h a t  

t h e  f l e x u r a l  dumping present  would 

F lexura l  damping would c e r t a i n l y  help, b u t  t he  curva tures  

a l s o  be neg l ig ib l e .  
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Many approximations have been made i n  order t o  achieve a s o l u t i o n  

and the  e f f e c t s  of these assumptions a r e  d i f f i c u l t  t o  assess .  Even a 

numerical i n t e g r a t i o n  of the  complete equations would be d i f f i c u l t  due 

t o  the  time dependent boundary conditions.  Furthermore, i f  complex 

s t r u c t u r e s  a r e  t o  be s tudied,  t he re  seems tal e x i s t  no method cf s t n h i t i c y  

determination t h a t  can serve a s  a design procedure. 

However, a system such a s  t h e  one disc’ussed can be approximated by 

poin t  masses and massless spr ings.  The advantage offered is  t h a t  the  

s t a b i l i t y  p rope r t i e s  of the  r e s u l t i n g  equat ions of motion have been 

ex tens ive ly  s tudied.  



CHAPTER I11 

LUMPED MASS MODEL 

I n  t h i s  chapter,  t he  exac t  equations of motion f o r  the lumped 

system are derived using Lagrange's method. Viscous damping term are 

a l s o  derived f o r  t h e  lumped system f o r  t h e  case where the  neighboring 

mass po in t s  have v e l o c i t y  dependent dampers between them. These equa- 

t i o n s  were numerically in t eg ra t ed  and the r e s u l t s  appear i n  a later 

chapter. 

The continuous system i n  Figure 1 can be approximated by a number 

of mass p o i n t s  connected by l i n e a r  elastic massless sp r ings  as shown 

i n  Figure 2. 

The Lagrangian f o r  t h i s  model i s  nuw a funct ion  of the v a r i a b l e s  

I,, cpi, liy pi, t. The equations of motion are given by 

From t h e  continuous ana lys i s ,  w e  showed t h a t  c e r t a i n  terms from t h e  k i n e t i c  

energy con t r ibu t ion  t o  the  Lagrangian canceled wi th  t h e  f i r s t  term from 

the expansion of t he  g r a v i t y  p o t e n t i a l  con t r ibu t ion  when the  center of 

mass moved i n  a Kepler ian o r b i t .  This fact w i l l  be demonstrated in t he  

developments of t h e  equations f o r  t he  simple models t h a t  f o l l m .  

The k i n e t i c  energy i s  
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i = l  

n + l  c Mi * 
where % = t o t a l  mass of system = 

i = l  

The magnitude of t he  vec tor  from the  cen te r  of t h e  Ear th  t o  the  ith mass 

i s  given by 

The length  of the  spr ing  between mass i - 1 and i, from the  law of 

cosines,  is 

I f  we de f ine  the  unstretched length  of each sp r ing  as 

p o t e n t i a l  may be w r i t t e n  as 

lie, the  elastic 

n + l  
= '1 k, [ei - liO1 2 

'E 2 
i = 1  

t h  where ki is the  sp r ing  constant  of t he  i 

i n  expanded form is 

spr ing ,  The g r a v i t y  p o t e n t i a l  

n + l  2 
2 -- ti cos (rp, - e) 

li [l - 3 cos (0, - e)] 
2R2 v , = - . c  @[ l -  R 

i = l  



The Lagrangian i s  L + T - VE - VG. 
necessary derivatives, namely 

We w i l l  now proceed to compute the 

Hence, the general equations of motion are 



and 

J J 

j = 1, 2, . ., n + 1 . 
The following d e f i n i t i o n s  w i l l  account f o r  the end condi t ions  

lo = 0 and ' n + 2 = '  * 

These two d e f i n i t i o n s  w i l l  y i e l d  t h e  proper system of equations f o r  t he  

s u b s a t e l l i t e - c a b l e  model considered here. The Lagrangian derived above 

w i l l  have the same form €or any system of p a r t i c l e s  connected by l i n e a r  

e l a s t i c ,  massless springs.  The only change w i l l  be the e l a s t i c  p o t e n t i a l .  

Its form w i l l  depend on t h e  manner i n  which the  system i s  t i e d  together,  

bu t  t he  method of de r iva t ion  i s  unchanged. 



A t  t h i s  point ,  l e t  us  examine how damping may be pu t  into equations 

(38) and (39). If we consider viscous (i.e. welocity dependent) damping, 

t h e  fo rce  may be writ ten as 

= - Ciei *DAMP 

where Ci E damping f a c t o r  of ith spr ing  whose rate of chapge of l eng th  

i s  e From our previous c a l c u l a t i o n s  of e we  can de r ive  i' i' 

. 

In Lagrange's equation of motion, t h i s  con t r ibu t ion  is t r e a t e d  as a 

genera l ized  fo rce  s ince  i t  i s  non-conservative, The v i r t u a l  work done by 

the  genera l ized  fo rce  i s  

QiMi = [component of (Ciei) along qi] 8qi 

(where Q must be a moment if q is  an angular coordinate.  In t h i s  case, 

the qi s are the  fils and vi's. 

blem 

i i 
t We now t u r n  t o  t h e  geometry of t he  pro- 

(pi-1 'pi %+I 



From the  law of s i n e s  

s i n  ai 

'i - 1 

The componentti of Ciei along ti and normal to t are i 

- C  e c o s a  and i i  i - Ciei s i n  Q i 

respec t ive ly .  The cont r ibu t ion  of Ci + lei + i s  

. . 
- ci + lei cos E and i 

- 
Ci + lei + 1 s i n  E + 1  i 

where 

sin (% - ' p i  + 1 1 Li + 

and s i n  y = 
i e i + l  

E i -180°-.ri 

Thus, i n  equation (38),  the  following terms must be added t o  the  r i g h t -  

hand s i d e  if damping is  t o  be considered 

. 

1 e j  + 1 

. 
li + l q P j  -91 + 1 sin (q,  - 'pi + 'I} cos * j  + 

e j  + 1 
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and for  equat ion  (39) 

- cli -(same as f i r s t  term i n  (41) 
lj’j 

( 42) 

- {same as second term i n  (41) 

Now t h a t  the complete nonlinear equations of motion f o r  a lumped 

mass model have been derived, the next s t e p  would be t o  consider t he  

s imples t  case and gradual ly  increase  the complexity. Hawever, before 

t h i s  i s  begun, the e f f e c t  of the expansion of t h e  g r a v i t y  p o t e n t i a l  which 

uncouples the  relative motion from the  o r b i t a l  motion w i l l  be examined, 

To do t h i s  w e  examine the dumbbell model shown i n  Figure 3. 

1. Dumbbell Model 

Thus f a r  i n  t h e  ana lys i s ,  the center  of r o t a t i o n  of t he  r e l a t i v e  

motion $as been assumed t o  move i n  an undisturbed Keplerian o r b i t .  There 

is ,  however, a coupling between t h e  r e l a t i v e  motion and the o r b i t a l  

motion such t h a t  t he  o r b i t  cannot be exac t ly  Keplerian. 

t h i s  chapter i s  t o  show what bounds e x i s t  i n  t h e  cen te r  of mass motion 

and a l s o  t o  show t h a t  t he  assumption t h a t  t he  center  of mass moving i n  an 

undisturbed Kepler ian o r b i t  w i l l  produce e r r o r s  which a r e  of the order of 

t h e  e r r o r s  which resu l t  from a s i n g l e  p rec i s ion  numerical ana lys i s .  

The purpose of 

The essence of g r a v i t y  grad ien t  effects on f i n i t e ,  non-axisymmetric 

bodies i n  o r b i t  can b e s t  be shown by s t a r t i n g  wi th  a simple two mass 

dumbbell model (Figure 3). 

l i n e a r  elastic spring. 

The two masses are connected by a massless, 

The exact equations of motion can be derived by 
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using Lagrange's equation. 

angle  cp can be measured from e i t h e r  the  nonrotat ing x a x i s  or from the 

l o c a l  vertical. The former provides a s l i g h t l y  simpler form of t h e  equa- 

t i ons  while the  l a t t e r  allows one t o  der ive  the  conservat ion of angular 

momentum equations more d i r e c t l y .  There is, hcrwever, no clear c u t  reason 

f o r  p re fe r ing  e i t h e r  one of the  two coordinate  systems over the  other.  

For the  dumbbell model shown i n  Figure 3, the  

For the  dumbbell model shown i n  Figure 3 and measuring cp relative 

t o  the  x ax is ,  the  k i n e t i c  energy and p o t e n t i a l  energy a r e  r e spec t ive ly  

(43) T = M [ i 2  + (Re2) + i2 

and 

- 1 /2  (44) V = - GM + 2Rt cos ( 0  - c p ) ]  

where G = product of un iversa l  g r a v i t a t i o n a l  cons tan t  and mass of Earth 

k = spr ing  constant  

M = end mass. 

The r e s u l t i n g  equations of motion a r e  

Orb i t a l  r ad ius  

R - 1  cos (e - (Dl 
B + R + 1 cos (0 - (DL 

(45) R e 2 - $  { A 

Orbi ta l  angle  

Gl s i n  (e -a)) * *  

2R 
(46) 8 = -- + R 
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Relative angle 

(47) ; P - m -  GR s i n  (8  - a1 
f 21 

where 

2 2  312 3 12 
A [R + f + 2Rf COS I0 - c p ) ]  and B = [R2 f f2  - 2Rf cos  (9 - c p ) ]  . 

The coordinate system taken with Q, measured from the l o c a l  v e r t i c a l  

The Lagrangian i s  now t o  the Earth y i e lds  s l i g h t l y  d i f f erent  equations. 

given by 

-1 /2 
(49) L M[i2  + (R6)2 + i2 + f2 ( i  + ;)*I + MG + l2 4- 2R1 cos cp]  

+ [R2 + f 2  - 2Rf cos cp ]  -1'2} - k( L - fo) 2 

and the equations are 

Orbital radius 

Orbital angle 



Rela t ive  angle  

Spring ha l f  - l e n s  t h  

where 

3 12 2 2  3 /2 
and B' = [R  + I - R I  cos cp] A' = [ R  + I + 2RI cos cp]  . 2 2  

As s t a t e d  above, the  advantage of t h i s  coordinate  system is  t h a t  the  

conservation of angular momentum can be seen d i r e c t l y  from equation (51). 

This happens because i n  t h i s  coordinate  system, 9 is a c y c l i c  coordinate,  

t h a t  is, a r o t a t i o n  of the  re ference  f o r  0 does not  change the value of 

the Lagrangian. 

However, the  conservat ion of angular momentum can a l s o  be seen fo r  

the  o r ig ina l  system after some manipulation. Mult iply equation (46) by 

I and (47) by L/R and add the  r e s u l t i n g  equations t o  g e t  
I 

.. .. .. 0 .  

(54) 

or 

@+&p+.i;.1BB+2.cs!=o 
R R I  I 

which i s  the  equation f o r  conservation of angular momentum. Ei ther  

coordinate  system may be used f o r  the ana lys i s .  The second system, 

where 8 is cycl ic ,  f a c i l i t a t e s  the  energy ana lys i s  t h a t  follows while 
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t he  simpler form of the  equations r e s u l t i n g  from use of the f i r s t  system 

may s impl i fy  the  numerical a n a l y s i s  somewhat. 
e 

For the  second system w e  can e l imina te  8 from the  t o t a l  energy a s  

follows: l e t  H be t he  angular momentum of the system, then f o r  equation 

(55 )  * 2  2' H 6 ( R  + f2) + I cp = 5 

or 

. 
This expression f o r  8 i s  now put i n t o  the expression f o r  the t o t a l  energy, 

which a l s o  is a cons tan t  s ince  the system is conservative and has no EO' 
ex te rna l  fo rces  

E o = T + V  

hence 

+ 2Rl cos ~ p ] ' l / ~ +  [a2 + l2 - -112} 
COS cp]  

2 + k ( l  - lo) . 
Col l ec t ing  terms which are p o s i t i v e  d e f i n i t e  y i e l d s  
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and the  f i c t i t i o u s  p o t e n t i a l  V It is c a l l e d  f i c t i t i o u s  because i t  

conta ins  terms which come from the  k i n e t i c  energy term. 

0. 
However, i t  may 

be t r e a t e d  a s  a p o t e n t i a l  function. We get ,  

1 
2 2  112 (57) vo = - MG ( 

4M(R2 + 12) R + 1 + 2Rl cos c p )  

1 
+ 2  (R + l2 - 2R1 cos cp)  

but 

Eo = To + Vo and Vo = Eo - Tg 

or 

VO 5 Eo s ince  T o Z O  

Note t h a t  f o r  I s 0, we g e t  

( 58) 

Equation (58) is t he  f i c t i t i o u s  p o t e n t i a l  derived f o r  a po in t  with mass 

12 2M i n  an inverse  square a t t r a c t i o n  f i e l d  as shown i n  Goldstein . I f  w e  

expand the  f i c t i t i o u s  p o t e n t i a l  (57) i n  terms of the  r a t i o  of t he  body 

dimension t o  o r b i t a l  radius ,  namely 1/R, w e  g e t  
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or 

As expected, the f i r s t  term is t h e  term i n  (58) f o r  a po in t  mass and 

the second term i s  t h e  pe r tu rba t ion  due t o  the  f i n i t e  s i z e  of the  body. 

When t h i s  p o t e n t i a l  func t ion  i s  p l o t t e d  versus  R f o r  a f ixed  cp, t he  shape 

of t he  p o t e n t i a l  "well'' i s  e s s e n t i a l l y  no d i f f e r e n t  from t h a t  f o r  a po in t  

mass, This is because (1/R) is of the order of 10- even f o r  a body 

with dimensions of t h e  order of miles. This p o t e n t i a l  can a l s o  be p l o t t e d  

versus the  r e l a t i v e  angle cp. 

2 

Rela t ive  minima are found when 

where 

and is z e r o  a t  

c p = o , + ; , , + n ,  * 
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which is  g r e a t e r  than ze ro  when 

and i s  less than ze ro  when 

c p = + 2 * -  = +%, . . . 

as expected, when the  dumbbell po in t s  d i r e c t l y  towards the  Earth. This 

ana lys i s  a l s o  shows t h a t  when the  dumbbell i s  pointed normal t o  the  r ad ius  

from the Ea r th ' s  center, the  p o s i t i o n  i s  unstable .  

I f  t h e  system is not  i n  a circular or nea r ly  c i r c u l a r  o rb i t ,  the  

upper bound on the  energy i s  higher up the s i d e s  of t he  p o t e n t i a l  w e l l  

and a conclusion about g rav i ty  grad ien t  s t a b i l i z a t i o n  cannot be reached 

by t h i s  ana lys i s .  This  corresponds t o  an e l l i p t i c o r b i t ,  for which the  

o r b i t a l  angular  rate changes per iodicz l ly .  The dumbbell cannot s t a b i l i z e  

i t s e l f  about t he  l o c a l  vertical  f o r  o ther  than c i r c u l a r  or nea r ly  c i rcu-  

lar  o r b i t s  due t o  t h i s  changing o r b i t a l  angular rate.  It i s  e n t i r e l y  

poss ib le  t h a t  the  system could cont inue t o  increase  i t s  s p i n  r a t e  while  

the  o r b i t  decayed t o  a circular o r b i t .  This  would correspond t o  s t a r t i n g  

a t  t h e  top  of the  energy bounds i n  the  p o t e n t i a l  w e l l  and the  moving dawn 

towards the  bottom of the  w e l l  whi le  t h e  o r b i t  l o s t  energy and the  re la t ive 

motions gained energy through an increased s p i n  rate. 

cluded t h a t  i f  t h i s  poss ib l e  inc rease  i n  s p i n  r a t e  is  undes i rab le  from,? 

It can be con- 



41 

design viewpoint, t he  system should be placed i n  a c i r c u l a r  o r b i t .  

The a c t u a l  motion of t h e  spinning e l a s t i c  dumbbell i n  o r b i t  was 

found f o r  c e r t a i n  i n i t i a l  condi t ions  and parameters by numerically 

i n t e g r a t i n g  equations (45) through (48) A fou r th  order Runge-Kutta 

technique w a s  used with double prec is ion  a r i t hme t i c  on an IBM 709 

d i g i t a l  computer. 

Figure 4 shows a typ ica l  p l o t  of the dev ia t ion  of t h e  o r b i t a l  r a d i a l  

d i s t ance  for fhe dumbbell from a Keplerfan o r b i t  having t h e  same i n i t i a l  

condi t ions .  

the nonro ta t ing  coordinate system shown i n  Figure 3. 

rate i s  d r a s t i c a l l y  reduced as it  passes through per igee  and, even a t  t he  

next apogee, i t  has not  recovered i ts  s p i n  rate. Since t o t a l  energy is 

conserved, t h e  l o s s  represented  by t h e  slower s p i n  ra te  must show up as 

a movement of the center of mass t o  a higher energy o r b i t .  

shows t h a t  t h i s  i s  p r e c i s e l y  what happens. 

much as 108 f e e t  longer a f t e r  passing perigee. 

where the  s p i n  rate increased during perigee passage and the r a d i a l  d i s -  

tance decreased accordingly. This exchange of energy from t h e  o r b i t  t o  

t h e  r e l a t i v e  motion would be d e s t r u c t i v e  i f  i t  were t o  continue i n d e f i n i t e l y .  

The change i n  r a d i a l  d i s t ance  i s  q u i t e  small compared t o  the d i s t ance  

i t s e l f  and the  r e l a t i v e  motion i s  tunaffectedby these  changes f o r  t he  t i m e  

i n t e r v a l  of most computations. 

Figure 5 shows t h e  corresponding s p i n  rate, 9, measured from 

Note t h a t  t h e  s p i n  

Figure 4 

The r a d i a l  d i s t a n c e  is as 

Other cases  were found 

As a consequence of t h e  above results, equations (43) through (48) 

were a l s o  expanded i n  terms of (1/R) and only f irst  order terms re t a ined .  

The r e s u l t i n g  equations are 

Orb i t  

.* 
(59) R = &* - %  

R2 

. e  

2Re and c60) 0 0 - -  R 
.. 
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Rela t ive  motion 

'2 G f  k *. 
(61) I = 19 +?  [ I  + 3 COS 2($ - e)] - M(L - io) 

2R 

The e f f e c t  of the  expansion and dropping of higher order terms i s  

t o  uncouple the  r e l a t i v e  motion from the  o r b i t a l  motion a s  mentioned 

previously,  

Equations (61) and (62) a r e  those of an e l a s t i c  dumbbell i n  f r e e  space 

Equations (59)  and (60) a r e  those f o r  a poin t  mass i n  o rb i t .  

p lus  an add i t iona l  term i n  each equat ion from the g rav i ty  gradient .  

These equations were also numerically in t eg ra t ed  aswas the  previous 

s e t  of equations except t h a t  s i n g l e  p rec i s ion  a r i thmet ic  was used. A 

comparlson was made between the r e l a t i v e  motion ca l cu la t ed  using the exact  

equations (45) through (48) and the expanded set shown above, (39)  

through (62). The two ca l cu la t ions  agreed t o  wi th in  f i v e  s i g n i f i c a n t  

f i gu res  and the  d i f f e rences  appeared t o  be due t o  round-off f o r  the  s i n g l e  

prec is ion  cases, This seems t o  j u s t i f y  t h e  use of the expanded form of 

the equations f o r  numerical computations, even i f  the  system is i n  an 

e l l i p t i c  o r b i t ,  

2. S ingle  Mass Model 

An a l t e r n a t e  simple spr ing  mass m o d e l  t o  be analyzed Fs a l i g h t  end 

mass a t tached  t o  a much heavier mass by a l inear e l a s t i c ,  massless spr ing  

a s  shown i n  Figure 6. This  is  the  s implest  lumped mass model which 
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approximates the  o r i g i n a l  d i s t r i b u t e d  mass system shown i n  Figure 1. 

w i l l  be shown belaw t h a t  t h e  equations of t h i s  s i n g l e  mass model and 

those of t h e  dumbbell are i d e n t i c a l  t o  terms of order (1/R) , 

Lagrangian f o r  t h i s  case i s  

It 

2 The 

.. . a  

(63)  L = + ( R i ) 2  + i2 + (14)2 + [ 2 R l  + 2R8lcp] cos (cp  - 'e)  

GM .. . .  
2 

i- I i- 2 R l  cos (cp - €9))1'2 

However, if the equations of motion f o r  l and 9 are derived and expanded 

i n  terms of t / R  as before, we ge t  

and 

. e  

(65)  + + 9 s i n  2(cp - e) = 
2R 

.. 
R cos (QI - 9).  

I 
- e) 

+ 6 - R i 2  + %)sin R R 0 

These equations d i f f e r  from (61) and (62) only by the two terms on t h e  

right-hand s i d e  which are, however, ze ro  f o r  a Kepler ian o r b i t .  Thus, 
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equations (64) and (65) are exac t ly  the  same as those fo r  the dumbbell 

(61) and (62). 

The consequence of t h i s  is  t h a t  one can consider e i t h e r  a dumbbell 

or a s ing le  mass connected t o  a much heavier mass. 

motion are i d e n t i c a l  i f  terms of the  order of (L/R)* a r e  neglected. This 

could a l s o  have been shown d i r e c t l y  from the  Lagrangian f o r  the  dumbbell, 

equations (43) and (44). If  the po ten t i a l ,  V, were expanded i n  terms of 

1/R,  i t  would be seen t o  be independent of r o t a t i o n s  i n  (cp - e )  equal t o  

nfi. 

independent of whether i t  was i n i t i a l l y  s t a r t e d  a t  cp = cpi or 'pi + nr[. 

These equations expanded i n  terms of 1 / R  a r e  s t i l l  nonlinear and 

do not  r e a d i l y  y i e l d  a so lu t ion .  The usual procedure i s  t o  l i n e a r i z e  the 

nonlinear equations about some s t a t i o n a r y  poin t  t o  determine the  motion 

and s t a b i l i t y  i n  the  neighborhood of the  point.  A s t a t i o n a r y  poin t  is  an 

exact  so lu t ion  t o  the  nonlinear set  of equations f o r  which the  accelera-  

The equations of 

In  other words, the  dumbbell has the  same motion ( t o  order 1/R) 

t i ons  or second order de r iva t ives  a r e  i d e n t i c a l l y  zero. One s t a t i o n a r y  

point  fo r  the above system corresponds t o  g rav i ty  grad ien t  s t a b i l i z a t i o n .  

3. S ingle  Mass Model, Gravity Gradient S t ab i l i zed  

As has been shown befpre,  i n  c i r c u l a r  or near c i r c u l a r  o r b i t s ,  the  

system is i n  a bounded p o t e n t i a l  w e l l  and must be s t a b l e  i n  the  sense 

t h a t  o s c i l l a t i o n s  may e x i s t  bu t  may no t  grow without bound. The na ture  

of t h i s  motion can a l s o  be shown by examining the l i n e a r i z e d  equations. 

As the  des i red  re ference  state, w e  choose 

. . 
ls = const, R = const,  €3 = go = const, and cp 

0 -0  
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Thus, we  g e t  f o r  equations (61) and (62), where q1 and q 

t ions ' f rom the  r e fe rence  s t a t e ,  Is and cp 

a r e  the  devia- 2 
respec t ivefy ,  0 

and 

( 67) 

. 
- x q  'il 3 2 q2 = - 

IS 

These can be s impl i f i ed  by ehoosing the s t r e t c h e d  length,  

k 

, Lp 

which is t h e  s t r e t c h e d  equi l ibr ium length  of t he  r o t a t i n g  spring, and 

not ing  t h a t  

which leaves  

and 

'2 * *  - 
I- N, ll - 30 q2 

q2 ts  0 

The c h a r a c t e r i s t i c  exponents f o r  a r i n i d  dumbbell f o r  which q 5 0, are 1 
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A = + i ~ 3 ;  . 
Thus, the motion i s  pe r iod ic  wi th  a frequency of \73 i. 
the frequency found by P a u l  . 

This agrees w i t h  

1 The frequencies for  equations (69) and 

(70) are 

and 

From equation (68) f o r  the s teady  s t a t e  length  of the spring, w e  

can see the k/M must be l a r g e r  than 3 i 2  f o r  a phys ica l ly  r e a l i z a b l e  r e s u l t .  

I f  k/M >> i2, w e  can expand t h e  inner r a d i c a l  i n  equations (71) and (72) 

and show the  o r b i t a l  e f f e c t s  on the n a t u r a l  frequencies.  After expanding, 

one g e t s  

The f i r s t  r o o t  is  the  same as t h a t  of t he  r i g i d  duinbbell while  the second 

is  the  na tu ra l  frequency of the nonspinning sp r ing  mass system except for  

the add i t iona l  term, 38 , which e f f e c t i v e l y  " s t i f f e n s "  t h e  system. ' 2  

L e t  us  now examine t h e  s t a b i l i t y  of t he  dumbbell moving so as t o  

always have i t s  axis tangent t o  i t s  o r b i t a l  path. For t h i s  case, 
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and we  g e t  for  t he  l i n e a r i z e d  equations 

and 

where Is is  given by 

The corresponding 

(75) 

c h a r a c t e r i s t i c  equation is  

One r o o t  is obviously zero. For the remaining cubic,  i f  

t he re  w i l l  be one real r o o t  and two conjugate complex roo t s .  

condi t ion  f o r  t he  one real r o o t  of (75) t o  be negative, and,hence, y i e l d  

a s t a b l e  so lu t ion ,  would be f o r  a l l  the c o e f f i c i e n t s  of (75) to be of t he  

same s i g n  and non-zero. This is no t  the case; therefore ,  the s o l u t i o n  

is  uns tab le  as was shown by examining t h e  p e t e n t i a l .  

A necessary 
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4. S ingle  Mass Model Spinning i n  Orbi t  

The next item t o  be discussed i s  the  s t a b i l i t y  and motion of the  

dumbbell spinning i n  o r b i t .  

be l i nea r i zed .  However, s ince  the  system i s  spinning, (rp - e) i s  not 

a cons tan t  and the  add i t iona l  nonl inear  terin resul ts  from the  s i n e  and 

cosine terms i n  (61) and (62). 

Equations (59) through (62) apply and can 

Furthermore, there  i s  no longer a s t a t i o n -  

ary poin t  about which t o  l i n e a r i z e .  A s t a t i o n a r y  poin t  exists f o r  the  

spinning system only i n  the  l i m i t  as R + w i n  which case the  equations 

become those for an e l a s t i c  dumbbell i n  f r e e  space, namely, 

(76) 

and 

.. 
(77) ; = -a€! 1 or L- d t  (f2& = 0 . 

A s t a t i o n a r y  poin t  i s  given by 

Is = const.  and cp = const.  0 

a t  R * 06 t o  be 
S J  

Thus, w e  def ine  the  s t r e t ched  length  of the spring, 

the  f r e e  space s t r e t ched  equi l ibr ium length  

k 
ii fo . 

We may now l i n e a r i z e  equations (76) and (77) about these re ference  motions, 

By def in ing  
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w e  g e t  

and 

The characteristic exponents of t h i s  system of equations are 

This impl ies  t h a t  t he  frequency of o s c i l l a t i o n  is- which is  

t h e  same as t h a t  found f o r  the g r a v i t y  g rad ien t  s t a b i l i z e d  case. The 

repea ted  ze ro  r o o t s  imply t h a t  a conatant and a term having a l i n e a r  

growth i n  t i m e  are a l s o  so lu t ions  t o  the  l i n e a r  system of equations. 

However, equat ion (77) g ives  us the fact  t h a t  angular momentum is  conserved, 

or t h a t  

Pu t t ing  

(80) 

2' I cp = const ,  = H , 

'2 H2 
cp -4 

I 



i n t o  equat ion (76) y i e l d s  

which, a f t e r  l i n e a r i z a t i o n ,  y i e l d s  

where 

The c h a r a c t e r i s t i c  exponents of (81) a r e  e a s i l y  seen t o  be 5 r 2  k/M + 3cpo . 
After l i n e a r i z i n g  equat ion (So), we g e t  

or 

where A, B and C are cons tan ts  determined by i n i t i a l  candi t ions .  

(82) i t  i s  easy t o  see t h a t  t he  s o l u t i o n s  f o r  q 

t r a l l y  s t a b l e  and t h a t  t h e  i n s t a b i l i t y  ind ica ted  by the  repeated zero  

r o o t s  is  a consequence of not conserving angular momentum. 

of s o l u t i o n s  is  proper ly  r e s t r i c t e d ,  t h e  s o l u t i o n s  are a l l  n e u t r a l l y  

From 

and q 1 2 are i n  f a c t  neu- 

If t h e  class 



s t a b l e .  

what follows for  t he  system where R i s  f i n i t e .  

The importance of t h i s  " t r i v i a l  i n s t a b i l i t y "  w i l l  be Shawn i n  

When R i s  f i n i t e ,  the equations can be l i n e a r i z e d  around the same 

f r e e  space motion as before, but now, t h i s  motion does not  r ep resen t  a 

s t a t i o n a r y  point.  Af te r  l i n e a r i z i n g  about 

= const. = re ference  s p i n  r a t e  

and 90 = 'Pot + v i n i t i a l  

k 
PO 

Y . 
2R 

we obta in  t h e  sp r ing  length  devia t ion  

and the angular devia t ion  

(84) 42 = - [" cos 2(p0 - e )  - 36 s i n  2(q0 - 8 )  . 
R3 2R3 

These two equations are v a l i d  for  any o r b i t  and s p i n  r a t e .  

t h e  two changes i n  the  o r ig ina l  nonlinear,  exact equations (43) through 

(48) are: (a) an expansion i n  f / R  and keeping of f i r s t  order terms, and 

(b) l i n e a r i z a t i o n  of t h i s  expanded s e t  about the f r e e  space motion where 

R = 0% These equations, (83) and (84), c o n s t i t u t e  a l i n e a r ,  homogeneous, 

coupled s e t  of ordinary d i f f e r e n t i a l  equations with t i m e  dependent CO- 

e f f i c i e n t s .  

To  t h i s  point ,  



There are b a s i c a l l y  two such coe f f i c i en t s :  (1) G/R3 and (2) cosine 

and s i n e  of 2(q, - e).  I n  general ,  these  two types of terms are pe r iod ic  

but  do not  have the  same or commensurate per icds .  

s t a b i l i t y  theory t h a t  app l i e s  t o  a system of equat ions such as (83) and 

(84). 

have a l ready  been shown. However, t he  case where the  two types of terms 

0 

There i s  no general  

The i n t e r e s t i n g  spec ia l  cases t h a t  can be t r e a t e d  a n a l y t i c a l l y  

have commensurate per iods can be t r e a t e d  using Floquet s t a b i l i t y  theory 9 

and a numerical i n t e g r a t i o n  of the  equations.  

5. Floquet Theory 

Equations (83) and (84) can be transformed i n t o  four f i r s t  order 

equat ions by the  in t roduct ion  of two new va r i ab le s  

This y i e l d s  a system of equat ions whose general  form is  

where [ A ( t ) f  i s  the square nxn matr ix  of coe f f i c i en t s ,  {b( t ) )  is  the lxn  

column matrix of forc ing  functions,  and {q ) i s  the  lxn  column matr ix  of 

dependent va r i ab le s .  

If ( A ( t ) ]  has only constant  elements, system (85) can be t r e a t e d  by 

s tandard methods such as described i n  Chapter 6 of Reference 13. 

t h i s  i s  not  the  case f o r  the dumbbell spinning i n  o rb i t .  

per iodic ,  and i t s  l a r g e s t  per iod i s  commensurate wi th  the  l a r g e s t  period 

However, 

I f  [ A ( t ) ]  i s  

of (b ( t ) ) ,  Floquet theory may be appl ied  t o  system (85). 

i n t o  the proper form, w e  introduce an a r t i f i c i a l  var iab le ,  2, such t h a t  

To put  (85)  
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i a 0 which y i e l d s  a homogeneous s e t ,  namely 

0 I 
I COI . 

The matrix [ A ' ( t ) ]  is per iodic  i f  

[ A ' f t  + 4 1  = [ A w l  t y 0  

f o r  some per iod T 2 0. 

pendent so lu t ions  of (86) is c a l l e d  a fundamental matrix, 

s a t i s f i e s  (86). Also, if [ F ( t ) ]  is  a fundamental matrix, so i s  f F ( t  + T ) ]  

and the re  e x i s t s  a nonsingular matrix, [MI, sometimes c a l l e d  the  monodromy 

matrix", such t h a t  

A matrix [F ( t ) ]  whose columns a r e  l i n e a r l y  inde- 

Thus, [F ( t ) ]  

[ M I  may be reduced t o  i ts  Jordan normal form and the  eigenvalues, 

. . ., X are c a l l e d  mul t ip l i e r s .  None of the  m u l t i p l i e r s  vanish , n 

s ince  

= det[M] = exp trace [ A ( t ) ]  d t  + 0. X1L2 * 0 

0 s 
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m 

I n  f a c t ,  s ince  the  t r ace  of [ A ( t ) ]  I 0 f o r  most cases (i.e. 

i -1 

we conclude t h a t  

d e t  [M] = AlL2 . Ln = 1. 

.. 
The t r a c e  of [ A ( t ) ]  being zero means t h a t  t he  acce lera t ion ,  qi, does not  

depend on the  ve loc i ty ,  q This  is t r u e  of any spr ing  mass system i n  

o r b i t  as long as no ve loc i ty  dependent damping is present .  

i' 

I f  for example, 

viscous damping is  present ,  the  t r ace  of [ A ( t ) ]  would be a negat ive con- 

s t a n t  and the  product of the  A's would be l e s s  than one. As w i l l  be 

shown l a t e r ,  t h i s  means t h a t  the  system fox most cases is asymptot ical ly  

s t ab le .  S t a t ed  physical ly ,  t h i s  means the  system cannot continue t o  

o s c i l l a t e  i f  damping is present ,  unless  i t  is forced. 

Le t  u s  now consider how t o  obta in  the  matrix [M] and the  mul t ip l i e r s .  

I f  we take t = 0 and l e t  

( 88) = [II 

where [I] i s  the i d e n t i t y  matrix, we see t h a t  

(89) [MI  = r W 1  

We can obta in  [P(T)] by numerically i n t e g r a t i n g  system (86) n + 1 times 

for  the  var ious i n i t i a l  condi t ions which y i e l d  equation (88). That i s  
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This amounts t o  i n t e g r a t i n g  the  homogeneous p a r t  of t h e  o r i g i n a l  non- 

nomogeneous set, (85), for  var ious  i n i t i a l  condi t ions  and, l a s t l y ,  i n t e -  

g r a t i n g  the nonhomogeneous set w i t h  ze ro  i n i t i a l  condi t ions  (remember t h a t  

Z = 1, bu t  2 is only an a r t i c i f i c i a l  var iab le) .  The system of equations 

i s  in t eg ra t ed  over period T each time and t h e  monodromy matr ix  is formed 

as i n  (89). The form of [M] is general  except f o r  i ts last column where 

[MI  i s  given as 

The l a s t  column is the  variable 2 which i s  a cons tan t  and, hence, must 

r e t a i n  i t s  i n i t i a l  value throughout any given so lu t ion .  From t h e  form of 

(w), i t  is easy t o  see t h a t  )L = 1 must  be an eigenvalue f o r  any forced 

set. 

Let  us  now examine the  s t a b i l i t y  implied by var ious  A'S. We f i r s t  

assume [MI  t o  have n + 1 l i n e a r l y  independent vec to r s  or, s t a t e d  another 

way, t h a t  t h e  Jordan normal form of [MI i s  diagonal. By a s i m i l a r i t y  

t ransformation of (87), we can g e t  

and de f in ing  [ F ' ( t  + T ) ]  = [C][P(t + z)][C]-l 

w e  g e t  



where [J] i s  t h e  Jordan normal form of [ M I  and [ F ' ( t ) ]  i s  s t i l l  a fun- 

damental matrix of system (86). If the  columns of [ F ' ( t ) ]  a r e  w r i t t e n  

as the l i n e a r l y  independent so lu t ions ,  we get ,  i n  general, 

From t h i s ,  we can see  t h a t  during t h e  time i n t e r v a l  t t o  t + T t h e  magni- 

tude of the vec tor  decreases, remains cons tan t  or i nc reases  according t o  

1 xi! This is t h e  s t a b i l i t y  c r i t e r i o n  sought. 

An i n t e r e s t i n g  case r e s u l t s  when the  monodromy matr ix  i s  not redu- 

c i b l e  t o  a diagonal Jordan form. When t h i s  happens, i t  means t h a t  a t  

l e a s t  one X i s  repeated a t  l e a s t  once & t h a t  t h e r e  are not n + 1 

l i n e a r l y  independent vec to r s  a s soc ia t ed  with the mondromy matrix. 

the repeated r o o t s  are not  of u n i t  magnitude, t h i s  has no bear ing  on t h e  

s t a b i l i t y  question. However, i f  they a r e  equal t o  1.0, i t  rep resen t s  a 

polynomial growth with time. The order of t he  polynomial i s  one l e s s  

than t h e  order of t he  corresponding diagonal block matr ix  i n  the  Jordan 

matrix. I n  summary, 

I f  

1 xil > 1.0 exponent ia l ly  uns tab le  

I x , ~  -C 1.0 exponent ia l ly  s t a b l e  

1 xi/ = 1.0 (no t  repeated) n e u t r a l l y  s t a b l e  

I Xi/ = 1.0 ( repea ted)  e i t h e r  n e u t r a l l y  s t a b l e  or polynomial 

growth w i t h  t i m e  depending on [ 31.  

To po in t  out the a p p l i c a t i o n  of t he  theory, l e t  u s  examine a w e l l -  

known equation which can be handled a n a l y t i c a l l y ,  namely, t he  equation 

f o r  t h e  forced harmonic o s c i l l a t o r  



2 e ,  

x(t)  +oo x( t )  = cos at* 

By def in ing  XJ Y, w e  can put  (92) i n t o  the  form of (86). 

!I- - 
2 
0 0 - w  

1 0 

0 0 
P 

- 

cos w t  ;I 0 

The column vec tors  of i n i t i a l  condi t ions t o  form the i d e n t i t y  matrix are 

I n  t h i s  case, the per iod T = 2nh. 

is known, we can form the monodromy matrix. Let wo2 = x2 and o = 2n €or 

s impl ic i ty .  We g e t  

Since the so lu t ion  t o  equat ion (92) 

(93) 

0 

-1 

0 

The c h a r a c t e r i s t i c  equation is 

(1 + L ) ( l  + k ) ( 1  - )I) - 0 .. )I - - 1, - 1, 1. 

The r o o t s  are repeated and the  so lu t ion  may or may not  be stable. 

in s t ead  of f ind ing  [J] f o r  (93), which f o r  a r b i t r a r y  matrices may be 

d i f f i c u l t  t o  do d i r e c t l y ,  we  determine the  rank of the  matrix 

Now, 



0 -4 2, 

(94) [[MI - (- 1)[11] = i 0 0 0 :  

3% j 
i 

i 

r. 
I io 0 OJ 

from which w e  can f i n d  the  n u l l i t y  of [M] (i.e., ( n u l l i t y )  = (order )  

- (rank)), 

the number of off diagonal e n t r i e s  f o r  the  Jordan normal form of the  

matrix [MI. 

subdeterminant. I n  t h i s  case, the  rank i s  un i ty  because a l l  determi- 

nants  of order two and t h r e e  are obviously zero. Thus, , the  n u l l i t y  i s  

equal t o  the m u l t i p l i c i t y  and t h e  Jordan form has no off diagonal terms 

and t h e  system i s  n e u t r a l l y  s t ab le .  

The (mul t ip l ic i ty) - (nul l i ty )  of t he  repeated r o o t  g ives  us 

The rank i s  def ined as the  order of the  l a r g e s t  nonvanishing 

Now f o r  t he  case f o r  w = w, which we know t o  be unstable,  the  0 

monodromy matr ix  i s  

The c h a r a c t e r i s t i c  equat ion i s  

. 
(1 - x)(1 - x) (1  - x) = 0 * e  x = 1, 1, 1. 

Again the r o o t s  are repeated bu t  now t he  m u l t i p l i c i t y  i s  th ree  and the  

n u l l i t y  of 
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is obviously aga in  two, so t h a t  the  (mul t ip l ic i ty) - (nul l i ty )  i s  one and 

the  Jordan form of (95) has one off diagonal term. 

l i n e a r  jgruwth with time of one of the so lu t ions .  

This  represents  a 

Note t h a t  the  trace of the coe f f i c i en t  matrix f o r  (92) is  zero  

which impl ies  t h a t  the product, x1X2$ = 1.0 as it must be. 

mentioned, the  a r t i f i c i a l  va r i ab le  Z int roduces a predetermined X equal  

t o  1.0. Per iodic  forc ing  funct ions i n  a system of l i n e a r  equations can 

only add p a r t i c u l a r  so lu t ions  having, a t  most, a polynomial growth with 

t i m e  and never an exponent ia l  growth or decay. 

As previously 

One more example w i l l  be shown t o  poin t  out the  e f f e c t  of viscous 

damping which was mentioned a t  the  e a r l y  p a r t  of the d iscuss ion  of Floquet 

theory. Given the damped equation 

.. * 
x + c x + x = o  

where a fo rc ing  term has been omitted a t  no l o s s  of gene ra l i t y ,  and 

def in ing  k = Y, w e  g e t  

Here the  t r a c e  of the  c o e f f i c i e n t  matrix is  ( - C) ,  and, thus, w e  know 

= e x p l (  - C)dt = e -c7 
v - 2  . 

0 



Since [ A ( t ) ]  i n  (96) i s  a constant  matrix, any pos i t ive ,  nonzero, f i n i t e  

number can be thought of as the  period of the  matrix. The monodromy 

matrix f o r  C = 2 and T = 1 is 

and the  c h a r a c t e r i s t i c  equation is 

- 
x 2 - 2 e  ' x + e - 2 = ~  

Thus the  r o o t s  a r e  

hence 

x1x2 = e - * = e- '* s ince  c - 2 ,  7 = 1. 

Here the  k's a r e  less than 1.0 i n  magnitude and, therefore ,  represent  a 

decay or asymptotic s t a b i l i t y .  

t i c  i n s t a b i l i t y  would e x i s t .  

examined only when one of the r o o t s  of the  homogeneous s e t  has a multi-  

p l i e r  of 1.0. Unfortunately, t h i s  is the  case f o r  the  dumbbell spinning 

i n  the  g r a v i t y  gradient .  

Had C been a negat ive number, an asympto- 

The e f f e c t  of the  forc ing  term must  be 

6. Application of F l w u e t  Theory 

S t r i c t l y  speaking, Floquet theory app l i e s  only t o  a per iodic  co- 

e f f i c i e n t  matrix, [ A ( t ) ] .  However, [ A ( t ) J  can be considered t o  be 
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periodic ,  even if it  i s  not,  t o  w i th in  a given accuracy i f  i t s  elements 

a r e  a i l  pe r iod ic  and i f  one chooses a per iod f o r  [ A ( t ) ]  which is s u f f i -  

c i e n t l y  long so t h a t  p e r i o d i c i t y  i s  approximated, The p r a c t i c a l  l i m i t  

on the usefulness  of t h i s  f a c t  is usua l ly  computer accuracy. The more 

po in t s  the  computer must take t o  i n t e g r a t e  Over the  given period, the  

lower the  accuracy of the  end r e s u l t ,  Hence, i f  an extremely long time 

i n t e r v a l  must be taken t o  adequately approximate p e r i o d i c i t y  of [ A ( t ) ] ,  

the  accuracy of the  i n t e g r a t i o n  w i l l  be i n  quest ion due t o  round-off 

e r ro r s .  

The Floquet s t a b i l i t y  theory described i n  the  previous s e c t i o n  was 

appl ied  t o  equat ions (83) and (84) f o r  c i r c u l a r  o r b i t s  where the  one time 

va r i an t  coe f f i c i en t ,  G/R , was constant.  

one must watch fo r  repeated roo t s  of the  homogeneous equations s e t  equal  

t o  1. I n  a l l  the  cases examined, two m u l t i p l i e r s  having t h i s  value were 

found i n  add i t ion  t o  the  one from the  a r t i f i c i a l  var iab le ,  2 .  Because 

t h e  n u l l i t y  w a s  always two and the  n u l t i p l i c i t y  was three,  a l i n e a r  

growth wi th  t i m e  was indicated.  

3 The equations a r e  forced, so 

Huwever, recall t h a t  a l i n e a r  growth i n  t i m e  was a l s o  found f o r  the  

system i n  f r e e  space when angular momentum of the  reference motion was 

not  preserved by the  i n i t i a l  conditions.  

" t r i v i a l  i n s t a b i l i t y ' '  and merely ind ica ted  t h a t  the  pos i t i on  angle was 

devia t ing  from t h e  re ference  angle, l i n e a r l y  with t i m e ,  but  t h a t  the  sp in  

This was i d e n t i f i e d  as a 

r a t e  was not  gruwing. 

but  were not  repeated;  hence, they represented neu t r a l  s t a b i l i t y  or 

per iodic  motion f o r  the  cases considered. 

l i nea r i zed  equations i s  per iodic ,  the  v a l i d i t y  of the  l i n e a r i z a t i o n  i s  

open t o  qqestion. 

The remaining m u l t i p l i e r s  had a magnitude of 1.0 

Since the  motion given by the  
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When neu t r a l  s t a b i l i t y  of the  

a nonl inear  system, no conclusions 

l i nea r i zed  equations i s  found f o r  

can be s t a t e d  concerning the  s t a b i -  

l i t y  of the  nonl inear  system. 

the  nonl inear  equations numerically and observe the  motion. 

hand, if exponential  s t a b i l i t y  or i n s t a b i l i t y  is indica ted  fo r  the  

l i nea r i zed  equations,  the  the  nonl inear  system is a l s o  s t a b l e  or uns tab le  

respec t ive ly .  

I n  t h i s  case, one must a c t u a l l y  i n t e g r a t e  

On the  other  

The expanded nonl inear  sys  t e m  of equations (61) through (62) were 

numerically in t eg ra t ed  and t h i s  motion compared t o  the  motion ca l cu la t ed  

using the  l i nea r i zed  system (83) and (84). 

good as can be seen from Figures  7, 8, and 9 f o r  c i r c u l a r  o rb i t s .  

7 shows the  a x i a l  s t r e t c h i n g  or devia t ion  of the  s u b s a t e l l i t e  due t o  the  

g r a v i t y  grad ien t  f o r  var ious o r b i t s  and sp r ing  s t i f f n e s s e s .  

the  curve and i t s  dependence on o r b i t a l  rad ius  suggested the  following 

empdrical formula f o r  the  g rav i ty  grad ien t  per turba t ion  i n  length.  

The agreement was su rp r i s ing ly  

Figure 

The shape of 

This equation has been v e r i f i e d  only by comparison with Figure 7, and i t s  

v a l l d i t y  f o r  sp in  rates other than one revolu t ion  per hour has not  been 

demonstrated. 

t o  a 20 m i l s  x 6 miles, nylon cable  a t tached  t o  a 100 pound s u b s a t e l l l t e .  

Figure 8 shows t h a t  the  sp in  rate devia t ion  from the  nominal r a t e  of 

The e f f e c t i v e  sp r ing  constants  p l o t t e d  correspond roughly 

one rev,/hour i s  considerably less than ,+ 1% for o r b i t s  above 14,000 

nau t i ca l  miles. Figure 9 is the  t ransverse  devia t ion  of a s u b s a t e l l i t e  

due t o  g r a v i t y  e f f e c t s .  

small when compared t o  the  s i z e  of the  overa l l  system. 

The curve shows t h a t  the o s c i l l a t i o n s  a r e  q u i t e  



Floquet  theory was a l s o  appl ied  t o  c e r t a i n  cases of e l l i p t i c  o r b i t s ,  

For the cases where t h e  pe r iod ic  c o e f f i c i e n t s  wi th  and without damping. 

were commensurate, t h e  theory showed t h a t  t he  system was e i t h e r  n e u t r a l l y  

s t a b l e  as before  or asymptot ica l ly  s t a b l e  when damping w a s  included. The 

only i n s t a b i l i t y  found i n  a l l  the cases examined, occurred when the  

system was spinning i n  an o r b i t  which was low enough t o  d r a s t i c a l l y  and 

permanently change t h e  s p i n  r a t e .  

An example of t h i s  i s  shown i n  Figure 10, which dep ic t s  the e f f e c t  

According t o  Floquet theory the  system is  of an extremely l a w  perigee. 

unstable and a subsequent numerical i n t e g r a t i o n  of t h e  nonlinear equations 

confirmed t h i s .  Note t h a t  t he  s p i n  rate can be e i t h e r  increased or 

decreased during perigee passing depending on i t s  o r i e n t a t i o n  p r i o r  t o  

reaching perigee.  I f  t he  perigee is increased t o  10,000 n a u t i c a l  miles 

for  t he  same apogee, the system becomes s t ab le .  Figure 11 demonstrates 

3 t h i s .  The o s c i l l a t i o n s  i n  sp in  rate change as 1 / R  as the system pro- 

ceeds around the  o r b i t  bu t  no n e t  change i s  experienced. The l i n e a r  

g r m t h  i n  t h e  angular p o s i t i o n  shown i n  Figure 11 i s  the so c a l l e d  " t r i v i a l "  

i n s t a b i l i t y "  previously discussed. 

I n  summary, t h e  s u b s a t e l l i t e  wire system, neglec t ing  the  t ransverse  

motion of t h e  wire, appears t o  be n e u t r a l l y  s t a b l e  i n  c i r c u l a r  and cer- 

t a i n  e l l i p t i c  o r b i t s  f o r  s p i n  rates of one and t e n  rev,/hour. 

l i n e a r i z e d  a n a l y s i s  has been shown t o  be usefu l  and, indeed, p r e d i c t s  an 

i n s t a b i l i t y  f u r  low o r b i t s .  The next chapter dea l s  with the  dynamics of 

the connecting wire using t h e  lumped mass approach. 

The 



CHAPTER IV 

DYNAMICS OF A SPINNING RADIAL WIRE 

The motion of a mass connected t o  a much heavier  mass i n  o r b i t  has 

been shown t o  be s t a b l e  f o r  many cases. 

the  motion of the  connecting wire when i t  i s  no t  assumed t o  be massless. 

Assumptions such as uncoupling of radial and t ransverse  motion and also 

constant  tens ion  have been made by previous au thors  t o  enable  so lu t ions  

t o  be obtained. 

The next s t e p  i s  t o  examine 

The approach here  is t o  consider  a lumped mass system and treat the  

ordinary d i f f e r e n t i a l  equat ions without  assuming the  tens ion  t o  be con- 

s t a n t  and without neglec t ing  C o r i o l i s  e f f e c t s .  

the  equat ions of motion f o r  the  th ree  mass model shown i n  Figure 2 were 

der ived previously i n  general  form as equat ions (38) and (39). 

masses are considered, these  equat ions become 

To s tudy  t h e  l i n e  dynamics, 

When th ree  



. .  
2"2'p2 (100) 'p2 = - - 
l2 

.. 

and f i n a l l y  

The terms i n  equations (97) through (102) may be i d e n t i f i e d  as follows: 

. on the  right-hand s ide ,  the  f i r s t  term is the  Cor io l i s  force, the  second 

term is the  g r a v i t y  fo rce  and the  th i rd ,  and i n  some equations the  four th  

term, i s  the  elastic or sp r ing  force.  The above equations a r e  v a l i d  fo r  
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any o rb i t ,  s p i n  ra te  and def lec t ions .  I n  p a r t i c u l a r ,  the assumption of 

sma l l ' de f l ec t ions  has no t  been made. 

To determine whether the  two masses represent ing  the  continuous 

cable  are s u f f i c i e n t  t o  determine i t s  motion, the  frequencies  of the  

continuous nonro ta t ing  cable  wi th  constant  tens ion  were compared with 

those f o r  t he  l i nea r i zed ,  nonrotat ing lumped model. To do t h i s ,  the  

three  mass model must be a l t e r e d  t o  t h a t  of Figure 12. I n  t h i s  model, 

both ends are f ixed  and the  masses have only one degree of freedom each, 

namely, Y1 and Y This ana lys i s  w i l l  y i e l d  a four th  order c o e f f i c i e n t  

matr ix  whose r o o t s  w i l l  g ive  the  two na tu ra l  f requencies  of the  system. 

2. 

The k i n e t i c  energy i s  given by 

T = -  

and the  p o t e n t i a l  energy, keeping up t o  fou r th  order terms i n  Y 1' Y2, is 

V = 1/2  kl [Lo - L - 1/2 - "] L + 112 k2 [.. - L - 1/2 

+ 1 /2  - L - 1/2 4 
where Lo and L are r e spec t ive ly  the unstretched and s t r e t c h e d  spr ing  

lengths .  The l i n e a r  equat ions of motion which r e s u l t  a f t e r  aga in  drop- 

ping higher order terms are 



and 

For a cab le  wi th  cons tan t  geametric and elastic p rope r t i e s  along i t s  

length  (i.e. Itl - k = k and M = M ), we def ine  a cons tan t  H as 2 3  1 2  

Thus t h e  c o e f f i c i e n t  matrix of the equivalent f i r s t  order system is 

1. I 

0 0 1 0 

0 0 0 1 

-2H H 0 0 

H -2H 0 0 - - 
The c h a r a c t e r i s t i c  equat ion is 

4 X + 4HX2 + 3H2 = 0 

w i t h  r o o t s  

which a r e  t h e  f i r s t  and second na tu ra l  frequencies respec t ive ly .  These 

frequencies a r e  t o  be compared wi th  those of an equiva len t  cont inuously 

d i s t r i b u t e d  mass cable. The frequencies for a continuous cab le  are well 

known and are given by 
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where T = tension, p = mass d e n s i t y l u n i t  l ength  and L' = t o t a l  length of 

cable .  Since 

H = &  (1 -$] [k(L -Lo)] =z T M LM 

w e  can take the  r a t i o  of the  two lowest frequencies  and, no t ing  t h a t  

M = pL'/3 and L = L ' / 3 ,  we g e t  

For t h e  second n a t u r a l  frequency, we g e t  

continuous - ; r ~  or L. 17% e r r o r .  - 
JG lumped 

From the  above ca l cu la t ions ,  i t  can be seen t h a t  t h e  f i r s t  frequency i s  

reasonably accu ra t e  while  the  second i s  somewhat i n  e r r o r  as would be 

expected f o r  such a crude approximation t o  a continuous cable .  

The next  s t e p  i s  t o  determine the e f f e c t s  of the  C o r i o l i s  f o r c e  on 

the  t r ansve r se  f requencies  of a spinning cable.  To do th i s ,  the  s i n g l e  

mass model having two degrees of freedom as shown i n  Figure 13 was used. 

This s i m p l i f i c a t i o n  was made t o  keep the  c o e f f i c i e n t  matrix t o  f o u r t h  

order so t he  roo t s  could be e a s i l y  ex t rac ted ,  The ove ra l l  s p i n  rate was 

fixed. This  case would correspond t o  a mass which i s  much heavier  than 

the connecting cable  spinning i n  f r e e  space. The k i n e t i c  energy is 
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M ' 2  T = -  2 [ I  + I*(; + w ) ~  3 

* 
where o i S  the  given ove ra l l  sp in  rate and rp i s  the  sp in  r a t e  of the  mass 

p o h t  r e l a t i v e  t o w ,  The p o t e n t i a l  energy i s  

where I = inner  spr ing  length,  1 

and L = overa l l  length of system. The equations of motion a f t e r  l i n e a r i -  

- unstretched length of both spr ings  0 

za t ion  are, i n  matrix form 

Q1 

42 

P1 

p2 

e 

0 1 

0 0 

0 0 

0 

1 

zu 

0 

p1 

The na tu ra l  frequencies are 

(108) X " 2  i . 
We can check t h i s  r e s u l t  a t  o = 0 t o  see  haw w e l l  the  one mass 

approximation agrees with the  continuous cable  i n  t he  same way as before. 

We g e t  

= zf- or 7$ error. continuous 
lumped $8 
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I f  equation (108) i s  expanded i n  terms of o2 and only f i r s t  order terms 

a r e  rd ta ined ,  w e  g e t  

and 

From equation (109) the  e f f e c t  of spinning a t  a constant  rate and under 

constant  tension,  i s  t o  lower the  frequency assoc ia ted  with the  t rans-  

verse  mode. Equation ( l l b ) ,  f o r  w = 0, corresponds t o  t h e  a x i a l  mode and 

the e f f e c t  of spinning i s  t o  increase  t h a t  frequency. This is t he  same 

e f f e c t  t h a t  was found f o r  the  a x i a l  frequency f o r  the  s i n g l e  mass, namely 

a s t i f f h n i n g  e f f e c t  due t o  ro t a t ion .  For o = 0, the  axial and t ransverse  

modes a r e  uncoupled i n  the  l i n e a r  equations bu t  when the  system i s  spin- 

ning, they a r e  coupled by l i n e a r  terms through the  Cor io l i s  e f f e c t .  Thus 

when speaking of t he  "axial" or "transverse" frequency of a spinning 

system, one usua l ly  means the frequency of t he  motion which i s  predomi- 

nant ly  i n  the  a x i a l  or t ransverse  d i r e c t i o n  even though the  two motions 

a r e  coupled. The a b m e  conclusions are the  same as those reached f o r  the  

d i s t r i b u t e d  mass cable  i n  Chapter 11, 

To examine the  e f f e c t s  of l a r g e  def lec t ions ,  t he  system of equations 

(97) through (102) w a s  numerically in t eg ra t ed  fo r  varying tension and 

i n i t i a l  amplitude with R 

a t  a constant  r ad ius  but  f r e e  i n  the  t angen t i a l  d i rec t ion .  

r i c a l  r e s u l t s  fo r  both spinning and nonspinning cases  compared favorably 

with the  frequencies  ca lcu la ted  f o r  the  var ious s impl i f ied  models above. 

00 (i.e.? f r e e  space) and mass t h ree  r e s t r a i n e d  

These nume- 



A p l o t  of amplitude versus frequency fo r  two s p e c i f i c  cases can be seen 

i n  Figure 14. 

When the  end mass i s  unres t ra ined  and the  lowest t ransverse  frequency 

i s  equal t o  or near t o  the a x i a l  frequency, a parametric type motion can 

occur. This  motion is not  the  type of parametric motion usua l ly  found 

because the  two modes a f f e c t e d  are d i r e c t l y  coupled through t h e i r  l i n e a r  

terms. When t h e  a x i a l  mode i s  exci ted,  t he  C o r i o l i s  e f f e c t s  d i r e c t l y  

exert a t ransverse  fo rce  on each mass poin t  of t he  cable .  The fo rce  on 

each mass po in t  i s  d i f f e r e n t  because the C o r i o l i s  force  is  a func t ion  nf 

t he  r a d i a l  v e l o c i t y  and the  sp in  rate, 

acce le ra t ion  v a r i e s  a long the  cable.  

Hence the  magnitude of t he  C o r i o l i s  

Since the  outef mass i s  much heavier ,  

i t s  a c c e l e r a t i o n  and corresponding displacement are smaller than those  f o r  

the  l i g h t e r  mass po in t s  of t he  cable.  This  causes t ransverse  de f l ec t ions  

t o  r e s u l t  due t o  the  axial motion of the cable.  

which may cause l a r g e  de f l ec t ions  i n  a spinning system, 

It i s  t h i s  phenomenon 

The g rav i ty  fo rces  on each mass poin t  can be seen t o  be independent 

of i ts  r a d i u s  from the  cen te r  of r o t a t i o n s  for the  l i n e a r  approximation 

and, therefore ,  can no t  e a s i l y  s ta r t  t ransverse  motions of the  cable .  To 

show t h i s ,  w e  de f ine  a nondimensional va r i ab le  as 

and in t roduce  t h i s  i n t o  equat ions (83) through (84). 

are independent of the  s teady state length,  namely 

Thus the  equat ions 
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. .  - - 36 cos 2(qo - 
.. 

3 2R 2R 
(111) 3 = - 

- s i n  ~ ( q  - e )  q3 + 36 cos 2(q0 - e) I 2R3 
0 

and 

.. . .  
- 3%j s i n  ?(q - 0 ) .  cos ?(q0 - (3) ]q2 - q 0 M 1  2R 0 

This  implies  t h a t  an i n e l a s t i c  s t r i n g ,  which was i n i t i a l l y  s t r a i g h t  

and spinning i n  the  g rav i ty  gradient,  would remain s t r a i g h t  according 

t o  the  l i n e a r i z e d  equat ions because the  g r a v i t y  grad ien t  would cause a l l  

masses t o  speed up and slow dawn a t  t h e  same rate .  However, e las t ic  

s t r e t c h i n g  due t o  the  g r a v i t y  g rad ien t  and the  r e s u l t i n g  Cor io l i s  acce- 

l e r a t i o n  cause o s c i l l a t i o n s  and, as i s  the  case i n  most elastic systems, 

the frequencies  of the  axial and t ransverse  motions m u s t  not  be i n  reso-  

nance or l a r g e  defaec t ions  w i l l  r e s u l t .  Figure 15 shows a case where the  

t r ansve r se  o s c i l l a t i o n s  developed with t i m e  whi le  Figure 16 shows the  

bea t ing  phenomenon when the  t ransverse  o s c i l l a t i o n s  were s t a r t e d  i n i t i a l l y .  

1. Damping Ef fec t s  

Damping i s  usua l ly  regarded as a "cure a l l "  f o r  most dynamics pro- 

The damping terms have a l ready  been derived-equations (41) and blems. 

(42). 

r a t i o n  t o  determine the  e f f e c t  of damping f o r  slam11 o s c i l l a t i o n s .  They 

become 

Let  u s  now l i n e a r i z e  these  terms about a s t r a i g h t  l i n e  configu- 
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and 

C s i n  f 
-1 = 0 j + 1 e i  + I  C .  e sin a. 

M 
- 3  i - 

5 M "1 j j 

where q 's are the devia t ions  i n  the lengths  I , Note t h a t  t h e  angular 

devia t ions  p do  not e n t e r  i n t o  t h e  l i n e a r  damping terms. 
j io 

j' 
This impl ies  t he re  is  no d i r e c t  damping i n  these  coord ina tes  f o r  

small de f l ec t ions .  Th i s  can be shown by camparing Figure 17 with  Figure 

18. 

s l i g h t  bea t  amplitude, I n  t h e  second case, t he  a x i a l  o s c i l l a t i o n  i s  

The f i r s t  case has no damping and t h e  o s c i l l a t i o n s  continue w i t h  a 

e f f e c t i v e l y  damped i n  seve ra l  o s c i l l a t i o n s  and t h e  t r ansve r se  o s c i l l a t i o n s  

a r e  reduced i n  amplitude i n i t i a l l y ,  but continue t o  o s c i l l a t e  long a f t e r  

t he  a x i a l  motion has damped out. This i nd ica t e s  t h a t  damping cannot be 

r e l i e d  upon t o  s i g n i f i c a n t l y  reduce t ransverse  l i n e  motion f o r  small 

d e f l e c t i o n s  (small i n  a mathematical sense and not necessa r i ly  small i n  

a physical sense) as previous papers such as the  one by Targoff have 

suggested. 

It is not a n t i c i p a t e d  t h a t  the small amount of f l e x u r a l  damping 

which would be p re sen t  i n  a phys ica l  system, w i l l  e f f e c t i v e l y  damp out 

the lower modes due t o  the  small r a d i i  of curvature of t h e  long t h i n  
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connecting cable .  

produce neg l ig ib l e  bending and the  cab le ' s  f l e x u r a l  damping c o e f f i c i e n t  

w i l l  a l s o  be  q u i t e  small. Bui lders  of these systems w i l l  have t o  accept  

a c e r t a i n  degree of motion unless  s p e c i a l  dampers which w i l l  e f f e c t i v e l y  

damp the  t r ansve r se  motion are designed. 

Deflect ions of a hundred f e e t  f o r  a 16,000 foo t  cable  

2. Motion of the Radial  Wire out of t he  Orbi ta l  Plane 

A l l  the  ana lys i s  t o  t h i s  po in t  has  allowed only motions i n  the  plane 

of the  orb i t .  This  i s  c e r t a i n l y  a l a r g e  class of problems. However, i t  

remains t o  be shown t h a t  t h i s  motion can be examined independently of 

the other  p o s s i b i l i t i e s .  It can be argued t h a t  a s i n g l e  mass on the end 

of a massless sp r ing  spinning i n  the  o r b i t a l  plane w i l l  experience no 

forces  perpendicular  t o  the  o r b i t a l  plane. The Cor io l i s ,  elastic, cen- 

t r i f u g a l  and g r a v i t y  fo rces  a l l  act  i n  the plane. 

The same i s  t r u e  f o r  the  connecting cable;  however, small per tur -  

ba t ions  may occur t,o d i s t u r b  i t  out of the o r b i t a l  plane even though 

the  heavier  s u b s a t e l l i t e  remains e s s e n t i a l l y  i n  the  plane. 

examines t h i s  problem for out  of plane motion of t he  cable  mass points ,  

b u t  p lane motion of the s u b s a t e l l i t e .  

This  chapter  

Figure 19 shows the coordinate  system used t o  de f ine  the  p o s i t i o n  

The important q u a n t i t i e s  needed t o  de r ive  the  new equa- of each mass. 

t i o n s  are, (1) the  length  of each sp r ing  

i) + s i n  qi - s i n  I/I 
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th and (2) the distance from the Earth's center t o  the i mass 

The Lagrange equations of motion are 

11 ) + s i n  q. s i n  ~r 
J j - 1  

1 x cos q j  cos (9, - (Pj - 
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and 

J - 5 s i n  2~r .  cos2(cp - 9). 
J j - cos + s i n  Jr j  + 

j 2R 

These equations were a l s o  numerically in t eg ra t ed  f o r  several cases. 

motion was found for :  (1) not spinning i n  free space, (2) spinning i n  

f r e e  space, and (3) spinning i n  o rb i t .  

The 

The results may be summarized as 

f ollaws: 

(1) 

expected s ince  the  out of plane motion i s  not  coupled through the  Cor io l i s  

The out of plane frequency i s  unaffected by the  ro t a t ion .  This was 

fo rces  

(2) When the  system is spinning, the i n  plane frequencies  a r e  'given by 

and the  out of plane by 
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= w2(nnI2 
OUT P t  

w 

s i n c e  the  tens ion  is  equal t o  t h e  c e n t r i f u g a l  fo rce  of t he  t i p  mass. 

Note t h a t  they w i l l  be e s s e n t i a l l y  equal i f  M/pl>> 1. 

t h e  same, t he  cable  merely v i b r a t e s  i n  and out of t h e  plane as s h m n  

i n  Figure 20. 

When they are 

To emphasize the  e f f e c t  of a r o t a t i o n  where the  i n  plane and out of 

plane frequencies were d i f f ezen t ,  t he  end mass was held  a t  a f ixed  

d i s t ance  s o  t h a t  i n  terms of the tens ion  t h e  two frequencies were given 

by 

and 

R r..e tension, T, was very law, compared t o  what i t  would have been wi th  

a l a r g e  end mass. Figure 21 i s  a p l o t  of the motion perpendicular t o  

t h e  imaginary l i n e  from t h e  cen te r  of r o t a t i o n  t o  the  end mass. The 

frequencies were d i f f e r e n t  and t h i s  produced the  i n t e r e s t i n g  p a t t e r n  

shown. I n i t i a l l y ,  t he  r o t a t i o n  of t h e  cable  about t he  imaginary l i n e  

through i t s  end p o i n t s  is  counter clockwise and moving back and f o r t h  

from t h e  second t o  fou r th  quadrants. However, a f t e r  t h e  motion has 

r o t a t e d  t o  the  f i r s t  and t h i r d  quadrants, i t  suddenly r eve r ses  d i r e c t i o n  

and begins a clockwise r o t a t i o n .  



(3) 

o ther  words, the  amplitudes of the two motions a r e  e s s e n t i a l l y  constant  

with t i m e .  

s i nce  add i t iona l  freedom out  of the  o r b i t a l  plane w i l l  no t  produce an 

i n s t a b i l i t y  i n  the  planar motion. 

The out of plane motion does not  "feed" on the  in-plane motion. I n  

Thus, the i n  plane motion may be t r e a t e d  independently 
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CHAPTER V 

FINITE BODIES 

The a n a l y s i s  t o  t h i s  po in t  has considered a l l  bodies t o  be p o i n t  

masses. 

i n s t a b i l i t i e s  a s soc ia t ed  with the  f i n i t e  bodies of the system, The con- 

nec t ing  cab le s  w i l l  not always be a t t ached  t o  t h e  can te r  of mass of each 

box, and t h i s  can cause r o t a t i o n a l  i n s t a b i l i t i e s  of t h e  bodies when the 

cable  v i b r a t i o n a l  frequencies are i n  resonance w i t h  t he  r o t a t i o n a l  

f requencies  of t h e  var ious  bodies. 

It is c e r t a i n l y  poss ib l e  t h a t  some physical systems might have 

The following ana lys i s  demonstrates haw the previous approach may 

The 'system t o  be a l s o  be used t o  analyze a system wi th  a f i n i t e  body. 

considered c o n s i s t s  of a cy l inder  of rad ius ,  a, and mass moment of i ne r -  

t i a ,  I, with two massless r a d i a l  cab les  connecting it t o  two po in t  mass. 

s u b s a t e l l i t e s  of mass, m, (see Figure 22). Obviously, t h e  model could 

be made more general  by assuming more mass po in t s  and inc luding  g r a v i t y  

grad ien t  terms. The length  of each spring, r ,  is  given by 

2 2  a -i- 1 - 2a1 cos ( y -  cp )  

and the r a d i u s  vec tor  t o  each s u b s a t e l l i t e  from the cen te r  of t h e  E a r t h  

is  given by 

2 2  R + 1 5 2 R L  cos (cp - e )  - 
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The Lagrange equat ions of motion are 

G f + R  cos ( 0 - 8 )  + - J  - R COS (a, - - {  2 A B 

R s i n  (a, 
B 

where 

2 3 12 A = [R + I + 2RL COS (cp - e)] and B = [ R  + L2 - 2Rl cos (cp  - e ) ]  
3 /2 2 2  

and 

r 2k .. 
Cp), r = unstretched - spr ing  length  

p l u s  the two o r b i t a l  equations of motion. 

These equat ions can be l i n e a r i z e d  about a s t r a i g h t  configurat ion 

where 

For f r e e  space, t he  equat ions are f o r  1, 9, and y respec t ive ly ,  
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and 

The c h a r a c t e r i s t i c  equat ion f o r  the above set of equat ions y i e l d s  as 

usual,  two ze ro  roo t s  because of the  c y c l i c  coordinate  and the  following 

add i t iona l  two roots which are the  na tu ra l  frequencies,  

J 

If, i n  t he  above expression cp = 0, then tS = ro and 0' 

. 
which is  j u s t  t he  sp r ing  mass frequency. For cpo # 0, but  a I, 0 w e  g e t  
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which is the  spinning sp r ing  mass frequency der ived earlier. For the 

general  case, the frequencies  are given above i n  equat ion (113). 

I n s t a b i l i t i e s  may occur when the  g rav i ty  grad ien t  fo rc ing  of the 

end mass i s  near a n a t u r a l  frequency f o r  the  f r e e  space motion given 

above. The fo rc ing  of the  end mass could r e s u l t  i n  t he  growth of the  

per iodic  r o t a t i o n a l  motion of the  cen te r  body. A complete study of the  

s t a b i l i t y  regions f o r  a p a r t i c u l a r  range of parameters and o r b i t s  can 

be c a r r i e d  out using Floquet theory i n  the manner discussed above. 



CHAPTER V I  

CONCLUSIONS 

The s u b s a t e l l i t e - c a b l e  s y s t e m  shown i n  Figure 1 has been analyzed 

assuming both a d i s t r i b u t e d  mass and a lumped mass desc r ip t ion  of the  

connecting cable .  

assumed. 

I n  both desc r ip t ions ,  a l i n e a r  e l a s t i c  material was 

For the  d i s t r i b u t e d  mass case, the  complexity of the  r e s u l t i n g  

nonlinear p a r t i a l  d i f f e r e n t i a l  equations appears t o  preclude t h e i r  use 

f o r  motion and s t a b i l i t y  s t u d i e s  of the system, except f o r  a few 

s i m p l e  cases .  In  p a r t i c u l a r ,  the equations must be l i nea r i zed  and some 

of the l i n e a r  coupling terms neglected i n  order  t o  ob ta in  so lu t ions .  

On the  o the r  hand, i f  the  system i s  approximated by lrimped po in t  

masses connected by l i n e a r  e l a s t i c  massless spr ings ,  s eve ra l  p r a c t i c a l  

advantages over the d i s t r i b u t e d  mass approach are obtained. 

( a )  Lagrange's equations of motions may be sys t ema t i ca l ly  derived 

f o r  any genera l  system by cons ider ing  the  e l a s t i c  and g r a v i t y  

po ten t i a l s .  This can a l so  be c a r r i e d  o u t  f o r  the d i s t r i b u t e d  

mass system, but one must d e a l  with t h e  v a r i a t i o n  of i n t e g r a l s  

ins tead  of merely tak ing  p a r t i a l  d e r i v a t i v e s ,  a s  is the case f o r  

a d i s c r e t e  system. 

(b )  The r e s u l t i n g  exact nonlinear ord inary  d i f f e r e n t i a l  equations 

may be e a s i l y  in t eg ra t ed  using a standard Runge-Kutta 
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numerical i n t e g r a t i o n  rou t ine .  Thus, computer experiments can 

e a s i l y  be conducted t o  ob ta in  the  motion of the system 

under cons ide ra  t ion. 

( c )  The equations may be l i n e a r i z e d  about some des i r ed  re ference  

motion and Floquet theory appl ied  through numerical i n t e g r a t i o n  

to  i n v e s t i g a t e  the s t a b i l i t y  p rope r t i e s .  This a l s o  can be 

accomplished f o r  any genera l  conf igura t ion .  

The p a r t i c u l a r  r e s u l t s  obtained by cons ider ing  the lumped model 

are : 

(1) 

n e u t r a l l y  s t a b l e  f o r  t h e  c i r c u l a r  and e l l i p t i c  o r b i t s  considered, except 

when the  o r b i t  has a perigee low enough to  permanently a l t e r  the  sp in  

rate.  Again i t  should be pointed ou t  t h a t  t hese  resul ts  and conclusions 

a r e  a consequence of a numerical i n t e g r a t i o n  of the equations of motion 

and sub jec t  t o  computer accuracy l i m i t a t i o n s .  

de t ec t ab le  f o r  a time i n t e r v a l  of s e v e r a l  hours and one can conclude t h a t  

i f  an i n s t a b i l i t y  does ex i s t ,  i t  must be very slowly growing. 

(2 )  The cen te r  of mass motion may be assumed t o  move i n  a Keplerian 

o r b i t  f o r  computational purposes. 

(3) 

could become more c i r c u l a r  while the  r e l a t i v e  s p i n  r a t e  g r e a t l y  increases .  

(4)  

frequencies of the  d i s t r i b u t e d  mass cab le  to be s tudied .  

The poin t  mass on the  end of  a l i n e a r  e las t ic  massless sp r ing  i s  

However, no growth was 

For e l l i p t i c  o r b i t s ,  the  p o s s i b i l i t y  does e x i s t  t h a t  t h e  o r b i t  

Very few masses are  needed t o  accu ra t e ly  p r e d i c t  the  lowest n a t u r a l  

For example, 

two masses w i l l  gdve the  lowest frequency to about 4 per  c e n t  of the 

a c t u a l  frequency. 

( 5 )  Discrete v iscous  dampers may be  Included in t h e  a n a l y s i s  c r e a t i n g  

genera l ized  forces .  R e s u l t s  show t h a t  t h e  axial o r  s t r e t c h i n g  motion 
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is e f f e c t i v e l y  damped out, bu t  t h a t  t he  t ransverse  motion is damped 

only when de f l ec t ions  become so l a r g e  as t o  be mathematically nonlinear: 

t h i s  seems t o  be a few percent  of t he  length  f o r  the  lowest mode. 

(6) 

verse  motion when t h e i r  f requencies  are c lose  together .  Large de f l ec t ions  

can a l s o  occur when these frequencies  are near each other.  

(7) An add i t iona l  out of o r b i t a l  plane degree of freedom given t o  

each cable  mass po in t  does not introduce an added i n s t a b i l i t y  i n t o  

the  system and, hence, can be ignored i n  s t a b i l i t y  cons idera t ions  of 

systems spinning peimari ly  i n  the  o r b i t a l  plane. 

A beat ing  phenomenon occurs between the  axial m t i o n  and the t rans-  
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Figure 1. Coordinate system for distributed mass 
wire-subsatellite system 

Figure 2. Coordinate system for lumped mass model 
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Center of mass 

Y 

Figure 3. Dumbbell configuration 
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Figure 6. Single mass configuration 
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Figure 7. Axial stretching due t o  gravity gradient 
effects vs. effective spring s t i f f n e s s  
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Figure 8. Spin ra te  deviation due t o  gravity gradient 
effects VS. orbital  radius 
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Figure 12. Non-rotating two mass configuration 
with fixed ends 

at a constant rate, 03 

Figure 13. Rotating single mass configuration 
with fixed ends 
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$ 3 angle bemeen R and xJy plane 

$4, E angle becween x axis and projection 
1 1 

of L i  f n  x J y  plane 

Figure 19. Coordinate system for motion out of orbi ta l  plane 
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Figure 22. Coordinate system for 
f i n i t e  central body 


